Анализ и технологическая оценка химического производства

Министерство образования и науки Украины

Восточноукраинский национальный университет

им.Даля

РЕФЕРАТ

на тему: «Анализ и технологическая оценка химического производства»

Выполнил: студент группы УП-211 Зарубин Е.А.

Проверил: Хаустова А.В.

Луганск 2002г.

План

    Технология производства соляной кислоты

    Производство азотной кислоты

    Производство серной кислоты

    Производство полимеров

    Производство химических волокон

    Производство пластмасс

7. Синтезы на основе ацетилена

8. Подготовка угля к коксованию

9. Получение синтезированного газа

1. Технология производства соляной кислоты

Соляная кислота—бесцветная жидкость, представляющая собой раствор хлористого водорода в воде. Она энергично растворяет многие металлы и их окислы. В технике применяется как соляная кислота, так и хлористый водород.

Хлористый водород используют для производства хлорорганических продуктов путем гидрохлорировании органических соединений, например этилена , ацетилена.

(Соляную кислоту применяют для получения хлоридов Zn, Ba. Mg, Са, Fe, A1 и т. д., для травления при пайке и лужении, и цветной металлургии (извлечение Pt, An), при гидролизе древесины, в производетве красителей, для гидрохлорировании органических соединении и т. д.

Процесс получения соляной кислоты имеет две стадии;

1) получение хлористого водорода;

2) абсорбция xлористого водорода водой.

Существуют два способа получения хлористого водорода: сульфат­ной и синтетический. Кроме того, в производстве; соляной кислоты используют хлористый водород, являющийся отходом при хлорировании насыщенных углеводородов

Сульфатный способ получения хлористого водорода основан на взаимодействии твердой поваренной соли с серной кислотой

2NaCl + H>2>SO4 = Na>2>SO>4> + 2НС1 — Q.

Процесс синтеза проводят в муфельных печах при температуре 500—550° С, обогрева­емых через стенку топочными газами. Концент­рация хлористого водорода н газе от 30 до 50% НС1. Способ находит применение, но новых производств не организуют.

При синтетическом способе синтез хлорис­того водорода проводится по реакции

Н>2> + С1>2>—» 2НС1 + 184,33 кдж

Cyxoй хлор и водород при нормальных условиях и в темноте не реагируют между со­бой, но на свету или при нагревании в присут­ствии паров воды реакция взаимодействия их сопровождается взрывом.

Синтез проводят при избытке 5—10% водорода и высокой температуре в печи, корпус ко­торой изготовляют из углеродистой или легированной стали, а крышку из асбеста. Нижняя часть печи (рис.1) выложена огнеупорным материалом. В ней помещена горелка, состоящая из двух концентрически расположенных стальных трубок. По наружной трубке в печь подается водород, а по внутренней — хлор. Которые на выходе из горелки смешиваются и спокойно реагируют; образуя факел горения с температурой 2000—2400° С.

Абсорбция хлористого водорода в воде идет с выделением большо­го количества тепла (образование гидратов), которого достаточно для нагревания кислоты до кипения. Для получения более концентриро­ванной соляной кислоты необходим отвод тепла, так как растворимость хлористого водорода в воде с повышением температуры уменьшается.

Поглощение НС1 проводят в абсорберах с отводом тепла. Через стенку (изотермическая абсорбция) или с отводом тепла в результате испарения части воды (адиабатическая абсорбция).

Соляная кислота выпускается следующих сортов: техническая (27,5% НС1); синтетическая (31% НС1), ингибиторная (20% НС1) и реактивная (35—38% НС1, плотность при 20°С равняется 1,17— 1,19 г/см3).

Кислоту перевозят и хранят в гуммироваявых стальных цистер­нах и контейнерах, в фаолитовых баках и контейнерах и в емкостях, изготовленных из керамики и стекла При введении в кислоту 1—3% ингибитора активность НС1 к стали снижается в 150—200 раз, поэтому ингибиторную кислоту перевозят в стальных нефутерованных цистернах.

2.Производство азотной кислоты

Безводная азотная кислота HNO>3>—тяжелая бесцветная жидкость плотностью 1520 кг/м3 (при 15° С). Она замерзает при темпе­ратуре —47° С и кипит при 85°С, При кипении HNO>3> частично разла­гается с выделением двуокиси азота. С водой HNO>3> смешивается в любых соотношениях, выделяя тепло, а с двуокисью азота образует нитроолеум.

К
онцентрированная кислота не реагирует с алюминием, хромом и даже железом, поэтому аппаратуру для получения азотной кислоты готовят из xpoмоникелевых сталей, алюминия или из стали, футерованной кислотоупорной керамикой.

Получение слабой азотной кислоты имеет две стадии;

а) окисление аммиака до окиси азота N0;

б) переработка N0 в азотную кислоту.

Окисление аммиака проводятся при температуре 800—900°С в присутствии катализатора, изготовленного из сплава платины н родия (5—10%) в виде сеток, сплетённых из тонкой проволоки. Кроме пла­тины, могут применяться менее активные катализаторы на основе окиси кобальта или железа с активирующими добавками. Аммиак может окисляться при 900°С и без катализатора, но в этом случае получается не окись азота, а азот:

4NH>3> + 3О>2> =2N>3> + 6Н>2>0 + Q.

Катализаторы очень чувствительны к примесям сероводорода, пыли и т, д., поэ­тому воздух перед смешением с аммиаком тщательно очищается. На рис. 2 показана схема контактного аппарата для окисления аммиака под атмосферным давлением. Аппа­рат имеет корпус цилиндрической формы в ней закреплены платино-радиовые сотки (3—4 шт.) и поролитовые трубки (из порис­той керамики) для очистки воздушко-амиачной смеси от пыли. Для получения окиси азота в контактный аппарат подают смесь, содержащую 10—11%. По­вышать содержание амиака нельзя, так как при 20° С смесь с содержанием 15—28% NH>3> становится взрывоопасной. При прохождении cmcеcи через платиновые сетки аммиак окисляется с образованием N0. Степень окисления аммиака составляет 98%.

Контактные аппараты, работающие под давлением 1,5—10 am (9,81•104 н/м2), мало отличаются от описанных выше, но в них имеется 16—20 сеток и аппаратура более толстостенная.

Переработка окиси азота в разбавленную азотную кислоту осуществляется следующим образом. Выходящие из контактного аппара­та нитрозные газы охлаждаются, и окись азота N0 окисляется самопроизвольно кислородом:

2NO + О>2> - > 2NO>2> + Q.

Окисление NO в NO>2> происходит очень медленно. Для увеличения скорости окисления необходимо понижать температуру (реакция аномальная, скорость растет при снижении температуры в отличие от других реакции) и испытать дарение (при увеличении давления с 1 до 10 am скорость возрастает в 100U раз). Поэтому окисление N0 в N0>2> и абсорбцию NO>2> часто происходит в установках, работающих под давлением 1,5—10 am (0,15—1 Мн/м2), что резко сокращает объемы окислительно-абсорбционных башен.

Абсорбция двуокиси азота осуществляется водой по суммарному уравнению

3NO>2>+ Н>2>О - > 2НNО>3> + NO + Q.

Н
итрит натрия затем окисляется до нитрата натрия.

На рис. 3 показана принципиальная схема получения азотной кислоты при атмосферном давлении. Воздух и аммиак после очистки от примесей подаются в смеситель1, а затем в контактный аппарат 2. Для окисления амиака. Образовавшиеся нитрозные газы при темпе­ратуре 800°С выходят из аппарата и, пройдя котел-утилизатор 3, oхлаждаются до 250°С и поступают в кожухотрубный холодильник 4, где дополнительно охлаждаются до 30° С, В холодильнике начитают­ся окисление N0 до NO>2> и конденсация пapoв, воды, при этом частично образуется HNO>3>

Из холодильника нитрозные газы направляются в абсорбционные насадочные башни 5, в которых окислы азота поглощаются водой; таких башен в системе б—8 шт. Прейдя последовательно через эти башни, газы поступают в окислительную башню б, где оставшаяся часть N0 окисляется в NO>2> и затем а башни щелочной абсорбции 7. Для поглощения N0 последняя башня орошается водой. Образовавшаяся слабая кислота охлаждается в холодильниках 8 и с помощью насосов 9 проходит последовательно противотоком газу все поглотительные башни. Кислота (50% HNO>3>) выводится из первой по ходу газа башни. Степень переработки окислов азота в азотную кислоту составляет 92%, а остальные окислы азота улавливаются в башнях щелочной абсорбции.

В установках, работающих под давлением 1,5—10 am (0,15— 1 Мн/м2} и по комбинированной схеме, степень поглощения окислов азота водой составляет 99%, а получаемая кислота более крепкая — 60—62%.

3. Производство серной кислоты

Моногидрат— серная кислота (100% H>2>SO>4>) представляет собой бесцветную маслянистую жидкость плотностью 1830,3 кг/м3, кипящую при 296,2s С и атмосферном давлении и замерзающую при +10,45° С.

В технике серной кислотой называют не только моногидрат, но и растворы его в воде различной концентрации H>2>SO>4 >+Н>2>0. Раствор серного ангидрида SO>4> в моногидрате называют олеумом H>2>SO>4> + SO>3>.При применении, транспортировке и производстве необходимо знать температуры плавления и кипения серной кислоты. При повышении концентрации серной кислоты от 0 до 64,35° до 100% образуются шесть индивидуальных химических соединений (гидратов), которые в твердом виде взаимно нерастворимы, а образуют эвтектические смеси.

С увеличением концентрации SO>3> от 64,35% до 100% при кристаллизации образуются твердые растворы. Все сорта выпускаемой кислоты имеют концентрации, близкие к эвтектическим смесям, т. ё. концентрации, имеющие низкие температуры кристаллизации. На­пример, 75%-ная, 93,3%-ная серная кислота, олеум (SO>3своб> = 18,07%) имеют температуры кристаллизации, равные соответственно—41; —37,85; —17,05 G.

Серная кислота находит широкое применение в промышленности. Примерно половина производимой серной кислоты расходуется на производство удобрений и кислот. Она применяется для травления стальных изделий перед лужением, хромированием и т.п. очистки нефтепродуктов от непредельных и сернистых соединений, для производства ряда красителей, лаков и красок, лекарственных веществ, некоторых пластмасс, спиртов, ядохимикатов, синтетических мою­щих средств, искусственного шелка, в текстильной промышленности для обработки тканей или волокна перед крашением, а также дли про­изводства крахмала, патоки и т. д.

Концентрированная серная кислота и олеум используют как водоотнимающее средства при производстве взрывчатых веществ (нитро­глицерина, пироксила, тротила и др.). концентрировании азотной кислоты и т. д.

В связи с дальнейшим развитием промышленности и совершенство техники возникают новые отрасли потребления серной кис­лоты, поэтому ее производство с каждым годом растет (табл. 1).

Таблица 1 Производство серной кислоты в СНГ (в млн. т)

В промышленности серную кислоту получают нитрозным и контактным способами. Независимо от способа производства сначала по­лучают сернистый ангидрид SO>2>, который затем перерабатывают в серную кислоту.

4. Производство полимеров

Высокомолекулярные соединения получают из мономеров полиме­ризацией, сополимеризацией, поликонденсацией и методами привитой полимеризации и блокполимеризации.

Полимеризация — процесс образования высокомолекулярных сое­динений в результате взаимодействия мономеров с двойными связями в молекуле между собой или взаимодействия гетероциклов с размы­канием колец

При проведении полимеризации совмещают воздействие тепла и химических веществ (катализаторы или инициаторы). Процесс полиме­ризации может вызываться облучением мономера γ-лучами, лучами рентгена, токами высокой частоты и фотохимически.

На процесс полимеризации большое влияние оказывает температу­ра, которая резко повышает или скорость роста цепи, или обрыв цепи полимера, что ведет к уменьшению молекулярного веса полимера и средней степени полимеризации, поэтому поддерживают оптимальную температуру процесса.

В описанных процессах полимеризации, как правило, образуются полимеры аморфной структуры с неупорядоченным пространственным расположением боковых групп вдоль оси макромолекулы.

Применение комплексных катализаторов, состоящих из металлоорганических соединений А1(С>2>5>)>3> и хлоридов металлов переменной валентности (TiCI>2>, TiCl>4>), обеспечивает получение полимеров со строго линейной структурой и симметричной пространственной ори­ентацией. Такие полимеры получили название стереорегулярных. Они имеют большую прочность, плотность, высокую температуру плавления и легко ориентируются при вытягивании.

В промышленности применяют блочную, эмульсионную, лаковую, капельную или бисерную полимеризации.

При блочном методе мономер, очищенный от примесей и смешанный с катализатором или инициатором, подается в форму (сосуд), где нагревается. Для получения полимера с высокими свойст­вами необходимо строго поддерживать температуру. Полимер, полу­чаемый в виде блока листа и т. п., из-за перегрева реакционной массы неоднороден.

При эмульсионной полимеризации мономер сме­шивается с инициатором и эмульгатором и с помощью мешалок пре­вращается в мельчайшие капельки, взвешенные в другой жидкости — обычно в воде. Полученные эмульсии нагреваются до температуры начала реакции, и процесс полимеризации мономера в каждой мель­чайшей капельке проходит самостоятельно. При этом можно легко от­водить тепло, выделяемое в процессе полимеризации, поэтому полу­чаемый полимер более однороден. Но эмульгатор трудно отделить от полимера, что затрудняет получение бесцветных материалов.

Лаковая полимеризация осуществляется в раство­рителе, смешивающемся с мономером и растворяющем образующийся полимер. Из полученного раствора полимер выделяют путем испарения растворителя или осаждением, или раствор может использоваться и качества лака. Кроме того, полимеризацию можно проводить в раство­рителе, в котором растворяется мономер, но не растворяется полимер. Образующийся полимер выпадает в твердом виде и отделяется фильтро­ванием. При этом получаются полимеры однородного состава, так как удается поддерживать определенную температуру процесса.

При капельной (суспензионной) полимери­зации используются инициаторы, растворимые в мономере, но не растворимые в воде. Полимеризация проходит самостоятельно в каж­дой крупной капле мономера размером от 0,05 до 0,3 см в отличие от размера капли (от 103 до 104 см) при эмульсионной полимеризации. Образовавшийся полимер в виде твердых частичек, не растворимых в воде, осаждается.

Если при получении полимеров участвуют два различных ненасы­щенных мономера, то такой процесс называется сополимеризацией. Метод сополимеризации позволяет увеличить число высокомолекуляр­ных соединений, широко варьировать свойства получаемых продуктов. Процессы сополимеризации аналогичны процессам полимеризации.

Образование полимеров из мономеров при проведении процессов полимеризации или сополимеризации происходит без выделения по­бочных продуктов.

Поликонденсация — процесс образования высокомолекулярных сое­динений — полимеров путем реакции поликонденсации, с образова­нием полимеров и выделением побочных продуктов (H>2>O, эфиры, NH>3 >СО>2> и др.). В реакцию поликонденсации вступают как одноимен­ные мономеры, содержащие две различные реакционные группы, например аминокислоты (процесс гомополиконденсации), так и мо­номеры различного химического состава (процесс гетерополиконденсации).

При поликонденсации образующиеся полимеры могут иметь как линейное (полиамиды, полиэфиры, поликарбонаты), так и трехмерное строение (аминопласты, фенопласты). Скорость процесса поликонден­сации и молекулярный вес полимера зависят от скорости вывода обра­зующегося в процессе реакции побочного продукта, от температуры, концентрации реагирующих компонентов. Поликонденсацию прово­дят как с использованием катализаторов (аминопласты, фенопласты), так и без них (полиамиды). Процесс поликонденсации можно прово­дить в расплаве, по лаковому способу и на поверхности двух фаз.

Поликонденсацию в расплаве осуществляют при температуре 200—280°С в реакторе в атмосфере инертного газа. В конце процесса для полного удаления низкомолекулярных соедине­ний в реакторе создается высокий вакуум. Этим способом получают полимеры в отсутствие растворителя.

Поликонденсация в растворе (мономеры раство­ряются в растворителе) проходит при малых скоростях, так как могут образовываться циклические соединения, и тогда затрудняется удале­ние низкомолекулярных продуктов реакции.

Полимеризация на поверхности раздела фаз проводится в несмешивающихся жидкостях, при этом взаимо­действие мономеров между собой происходит быстро при низких тем­пературах, так как выделяемые продукты выводятся из сферы реак­ции. Образующиеся высокоплавкие полимеры имеют высокий молеку­лярный вес. Такой способ получения полимера можно совместить с переработкой полимера в изделие.

Кроме основных методов получения высокомолекулярных соедине­ний, находят применение методы блок- и привитой полимеризации.

В технике высокомолекулярные соединения являются основой для получения синтетических полимерных материалов. Большое зна­чение из полимерных материалов имеют пластические массы, каучук и резина, химическое волокно, пленочные материалы, лаки, целлю­лоза и др.

5.Производство химических волокон

Волокнами называют тела, длина которых во много раз превышает очень малые (микроны) размеры их поперечного сечения.

По происхождению волокна делят на природные натуральные и химические.

Химические волокна разделяют на искусственные, получаемые из природных полимерных соединений, и синтетические, получаемые из полимеров. Особую группу составляет стеклянное волокно.

Искусственные волокна делят на целлюлозные (вискозные, медно-аммиачные, ацетатные) и белковые (казеиновые, соевобовые), а син­тетические — на карбоцепные и гетероцепные. К карбоцепным волокнам относят: хлорин, нитрон, политен, виньон, саран, винол и др., а к гетероцепным — полиамидные, полиэфирные, полиуретановые и др.

Для получения химических волокон применяются различные ме­тоды, имеющие много общего; но вместе с тем каждый метод имеет и свои особенности. Независимо от применяемого сырья технология изготовления волокон складывается из следующих стадий:

а) получение исходного материала;

б) приготовление прядильной массы;

в) формирование волокна;

г) отделка.

Высокомолекулярные соединения, применяемые для получения волокон, должны иметь высокую степень чистоты, растворяться или

плавиться.

Получение исходных материалов для изготовления синтетических волокон состоит из синтеза полимера — смолы, а для получения искусственного волокна необходимо отделение примесей от природных полимеров.

Приготовление прядильной массы для формирования волокон состоит из растворения полимеров в растворителях (спирте, Щелочи, ацетоне и др.) или расплавления смолы. Приготовленный раствор или расплав перед поступлением на формование очищают фильтрованием от примесей (примеси снижают прочность) и освобо­ждают от пузырьков воздуха. В случае необходимости в раствор или в расплав вводят красители ддя придания волокну окраски, мато­вости и т. д

Формование волокна осуществляют по мокрому и сухому способам прядения из раствора и по сухому способу — из расплава. Независимо от способа формования приготовленную прядильную мас­су продавливают через фильеру (нитеобразователь), имеющую до 25000 отверстий диаметром от0,04ли< и выше. Образовавшиеся тонкие струйки раствора или нити расплава охлаждают или химически об­рабатывают.

К искусственным волокнам относятся вискозные, ацетатные, медно-.аммиачные и др. Вискозное волокно находит наибольшее применение в технике. Для получения вискозного волокна прядильный раствор готовят из листов целлюлозы, обрабатываемой раствором едкого нат­ра (18—20%), в результате чего образуется щелочная целлюлоза

6. Производство пластмасс

Пластические массы делят на простые (ненаполненные) и сложные (композиционные). Основу пластических масс составляет высокомо­лекулярное соединение — смола, которая при нагревании и давлении переходит в пластическое состояние, формуется под воздействием внешних сил и после охлаждения сохраняет полученную форму.

Простые пластмассы получают только из одной смо­лы, например полиэтилена.

Сложные пластмассы состоят из смолы, наполните­лей, пластификаторов, красителей, стабилизаторов, отвердителей и др. Смола, являясь связующим веществом, придает смеси пластичность и формуемость.

Наполнители снижают стоимость пластмассы, придают или усили­вают определенные механические и диэлектрические свойства, сни­жают горючесть изделий, улучшают внешний вид и т. п. В качестве наполнителей применяют порошковые (древесная, кварцевая мука, графит, тальк, асбест и др.) и волокнистые (ткани, асбестовое волокно и др.) материалы.

Пластификаторы повышают пластичность, эластичность компози­ции, но при увеличении их количества прочность на разрыв и сжатие резко снижается. В качестве пластификаторов используют малолету­чие вещества (камфору, касторовое масло, дибутклфталаты. трикре-зилфосфат). Красители придают пластическим массам желаемую ок­раску. Они должны хорошо смешиваться и совмещаться со смолой и выдерживать воздействие температуры, воды и т. п., сохраняя цвет как в процессе формования, так и при применении изделия.

Отвердители — вещества, способные превращать линейную струк­туру полимера в результате сшивания макромолекул в трехмерную структуру. К ним относятся уротропин, гексаметилентетрамин и др.

Кроме перечисленных веществ, в состав сложной пластмассы вво­дят стабилизаторы, способствующие сохранению первоначальных свойств; смазки, облегчающие прессование; порошкообразователи — для получения пено- и поропластов.

Пластические массы (пластмассы) имеют низкую плотность (900— 1750 кг/м3), высокие механические и хорошие электроизоляционные свойства, высокую водостойкость, теплостойкость и химическую стой­кость, красивый внешний вид и т. д. Стоимость некоторых пластиче­ских масс не превышает стоимости цветных, а в некоторых случаях и черных металлов при расчете на 1 м3 материала. Такие технико-эконо­мические преимущества пластических масс перед другими материала­ми обусловили широкое их применение. Но пластмассы имеют низкую теплостойкость (60—300° С), подвержены «старению», что снижает их свойства.

Промышленность выпускает большое количество синтетических смол и пластмасс на их основе, поэтому для примера рассмотрим тех­нологию получения и свойства наиболее важнейших смол и пластмасс на их основе.

Полимеризационные смолы для получения пластмасс используют без наполнителей. Они термопластичны, обладают хорошими диэлек­трическими свойствами, высокой ударной прочностью (кроме полисти­рола), химически стойки, но большинство из них имеет низкую тепло­стойкость.

Сырьем для получения полистирола является стирол (С>6>5>СН=СН>2>). Полимеризацию стирола проводят лаковым, эмульсионным и блочным способами. Процесс полимеризации проходит по следующей схеме:

7.Синтезы на основе ацетилена

Ацетилен СН=СН — газ, легко вступающий в самые различные химические реакции с образованием многочисленных соединений, ис­пользуемых при получении волокон, каучуков, смол и т. д. Например, из ацетилена получают ацетальдегид, этиловый спирт, бутадиен, этил-ацетат, хлористый винил, винилацетат, хлоропрен, акрилонитрил и др. Он используется для получения высоких температур (3200° С) при сварке и резке металлов.

Ацетилен получают путем обработки карбида кальция водой (СаС>2> + 2Н>2>О ->Са(ОН)>2> + С>2>2>) или путем термоокислительного крекинга при 1400—1500С различных углеводородов (СН>4>, С>2>4> и до.)

Для примера рассмотрим синтез ацетальдегида на основе ацети­лена.

Ацетальдегид СНзСНО — альдегид уксусной кислоты, летучая жидкость с резким запахом, хорошо смешивается с водой и спиртом. Он используется для получения уксусной кислоты.

В
промышленности ацетальдегид по одной из схем (рис.5) получают следующим образом. Очищенный от примесей ацетилен, сме­шанный с циркуляционным газом, непрерывно подается в гидрататор 1, в котором находится нагретая до 80—100° С жидкость, содержащая сульфаты железа и ртути (в 1 л Н>2>О 200 е H>2>S0>4>, 0,4 г Hg, 40 г окислов железа). Ацетилен, барботируя через жидкость, переходит в ацетальде­гид по реакции:

СН = СН + Н>2>О --> СНзСНО + 1416 кдж.

Степень перехода ацетилена в ацетальдегид составляет 50—60%. Газы, содержащие ацетальдегид, ацетилен и примеси, поступают на охлаждение сначала в холодильник 2, где частично конденсируются пары воды, и конденсат возвращается в гидрататор 1, а затем в холо­дильник 3, где конденсируются пары ацетальдегида и воды, собирае­мые в сборнике 5 и направляемые на ректификацию (на схеме не пока­зано).

Газы, содержащие ацетилен, поступают в колонну 4, орошаемую водой, где из них извлекаются остатки ацетальдегида, и снова возвра­щаются в процесс. Для очистки оборотного газа от окислов углерода и азота часть его (10%) непрерывно отбирается из цикла и направляется на очистку. Выход ацетальдегида составляет примерно 96% от тео­ретического. Так как пары ртути и ее соединения ядовиты, начинают применяться не ртутные катализаторы в виде окислов Zn, Mg, Ni, Со, Cr.

Уксусная кислота находит применение в текстильной, фармацев­тической, парфюмерной промышленности, для получения сложных эфиров, в производстве ацетилцеллюлозы, уксусного ангидрида, аце­тона, ацетатного шелка, каучука, пластических масс и т. д.

Раньше кислоту получали сухой перегонкой древесины, броже­нием этанола, а в настоящее время — окислением ацетальдегида или гидратацией кетона.

Окисление ацетальдегида кислородом воздуха происходит в при­сутствии солей марганца при темпеатуре 60—70° С. Так как надуксусная кислота может взрываться, то парогазовая смесь разбавляется азотом. Образование СНзСООН идет по следующей схеме:

Для очистки от примесей синтетическую кислоту подвергают пе­регонке. Техническая кислота после перегонки содержит 97—99% СНзСООН, 0,1—0,5% НСООН, 0,5—2% Hp.

Безводная уксусная кислота плотностью 1049 кг/м3 (20 С) засты­вает при 16,6° С, кипит при 118,1° С. Она хорошо смешивается с во" дои и многими органическими жидкостями. При попадании на кожу вызывает ожоги.

8. Подготовка угля к коксованию

Коксование—процесс сухой перегонки каменных углей при их нагревании до 900—1050° С без доступа воздуха. В результате слож­ных физических и химических превращений образуется твердый, спекшийся продукт — кокс и прямой коксовый газ.

Кокс используют в металлургии, литейном производстве, для по­лучения электродов, карбида кальция и т. д.

Прямой коксовый газ содержит каменноугольную смолу, сырой бензол и другие продукты, поэтому его перерабатывают с получением ценных химических веществ.

Сырьем для получения кокса служат спекающиеся (коксующиеся) угли марки К, которых в недрах земли содержится мало Для расши­рения сырьевой базы для коксования применяют смесь — шихту, состоящую из коксующихся углей и углей других марок, мало содер­жащих серы и фосфора, которые при коксовании остаются в коксе и снижают его качество.

Перед поступлением на коксование угли тонко измельчаются— зерен размером менее 3 мм должно быть 85—90%.

Процесс коксования осуществляется в коксовой печи, представ­ляющей собой камеру, выложенную огнеупорным (динасовым) кирпи­чом. Камеры по 60—70 шт. соединяются между собой в коксовые ба­тареи; между ними имеются пространства (простенки), в которых сжи­гается генераторный или коксовый газ. Температура в простенках печи достигает 1400° С. Так как огнеупорный кирпич и уголь являют­ся плохими проводниками тепла, а для получения кокса требуется на­греть шихту до 900—1050° С, камеры делают в виде узких каналов — шириной — 0,4 м, длиной — 13—14 м, высотой — 4, 4,5 м. В камеру загружают до 15 т угля.

Н
а рис. 6 показана схема коксовой камеры. Она имеет две тор­цовые стороны — коксовую, куда выталкивается из камеры кокс (коксовый пирог), и машинную — для ввода в камеру коксо-выталкивателя 5, представляющего собой пластину с размерами, немного мень­шими, чем у сечения камеры. При коксовании машинная и коксовая стороны камеры плотно закрываются дверцами / и 2. В своде камеры имеются отверстия, через которые загружается шихта с помощью за­грузочного вагона с бункерами 4, течки которых устанавливаются над отверстиями в своде камеры. Вагон перемещается по рельсовому пути, расположенному над коксовыми камерами, и обслуживает десят­ки камер. После загрузки шихта в камере разравнивается, загрузоч­ные отверстия закрываются и начинается процесс коксования.

Для отвода паро-газовой смеси из камеры стояк 3 соединяется с газопроводом.

На рис. 7 показана схе­ма нагревания шихты в каме­рах коксовой батареи (попе­речный разрез) с перекидным над сводами камер ходом топочных газов. Воздух, по­ступающий на горение го­рючих газов, предварительно нагревается в регенераторах 4 и смешивается с газом, по­ступающим из отверстий 3 в простенках 2, расположенных между камерами /. В прос­тенке 2 происходит сгорание газообразного топлива, и го­рячие дымовые газы огибают камеру, подогревают ее с другой стороны и уходят че­рез регенераторы тепла в ды­мовую трубу.

Через каждые 20—30 мин поток газа и воздуха переключают на нагретые топочными газами регенераторы и поток газов обогревает обратную сторону камеры. Это обеспечивает равномерный нагрев ка­меры с обеих сторон. На заводах применяют различные системы обо­грева камер; пребывание шихты в камере 13—17 ч. Выделяющийся при коксовании в камерах прямой коксовый газ отсасывается возду­ходувкой и подается на переработку.

По окончании процесса коксования разгрузка камер проводится поочередно. После разгрузки камеры торцовые стороны ее закрывают­ся и цикл работы повторяется.

Из 1 т шихты с влажностью 6% в процессе коксования получают в среднем следующие продукты, кг:

Переработка прямого коксового газа

П
арогазовую смесь, выходящую из коксовой камеры, называют прямым коксовым газом. В 1 м3 газа, кроме Н>2>, СН>4>, СО и газообраз­ных углеводородов, содержится: смолы 80—130 г, бензольных углево­дородов 30—40 г, аммиака 8—13 г, сероводорода и других сернистых соединений 6—25 г, цианистых соединений — 0,5—1,5 г, паров воды 250—450 г, твердых частиц 15—35 г. Такой газ подвергают пере­работке по схеме, приведенной на рис. 8.

Прямой коксовый газ, выходящий из камеры при температуре 700—800° С, поступает в газосборник /, где охлаждается до 80° С во­дой; при этом из газа частично конденсируется смола и твердые вещест­ва. Для дополнительного выделения смолы газ охлаждают в холодиль­нике 2 до 20—30° С. Сконденсировавшаяся смола и надсмольная вода из газосборника 7 и холодильника 2 поступают в сборник 3, где разделяются на три слоя: нижний — твердые вещества, средний — смола» верхний — надсмольная вода. В надсмольной воде содержится аммиак. Для окончательного выделения из газа туманообразной смолы газ из холодильника 2 поступает в электрофильтр 4, где из него выделяет­ся смола, стекающая в сборник 3. Для продвижения прямого коксо­вого газа через систему аппаратов очистки применяется турбогазодувка 5. Пройдя турбогазодувку, газ нагревается в подогревателе 7 до 60— 70° С и поступает в сатуратор 6 — аппарат барботажного типа, в ко­тором находится 76—78% H^SO^. Аммиак, содержащийся в газе, реа­гирует с HoS04 с образованием сульфата аммония;

Образовавшийся сульфат аммония выпадает в осадок, отделяется от раствора, сушится и используется в качестве удобрения. Затем газ охлаждается до 20—25° С в холодильнике 9 и поступает в башни с на­садкой 8, орошаемые каменноугольным маслом (фракция при перегон­ке смолы, кипящая при 230—300° С), которое извлекает из газа бен­зол, толуол, ксилол и др.

Раствор сырого бензола подвергается перегонке, в результате чего отгоняется бензол и его гомологи, а масло после охлаждения снова возвращается на орошение башен 8. Освобожденный от примесей кок­совый газ называется обратным. Он очищается от соединений серы. Обратный коксовый газ в основном состоит из водорода (54—59%), метана (23—28%), окиси углерода (5—7%), углеводородов (2—3%) и примесей: азота (3—5%), углекислоты (1,5—2,5%), кислорода (0,3— 0,8%). Теплота сгорания его 16750—17200 кдж/м3.

Коксовый газ как высококалорийное топливо применяют для полу­чения высоких температур в металлургии, стекловарении, коксова­нии; его используют в качестве сырья в химической промышленности для получения водорода, сажи, ацетилена и т. д.

9. Получение синтезированного газа

Химические методы переработки нефти проводят при высоких тем­пературах без катализатора (термический крекинг), при высоких тем­пературах в присутствии катализатора (каталитический крекинг), в присутствии водорода, при высокой температуре и давлении (гидро­крекинг) и др. Благодаря высокой температуре происходит расщепле­ние молекул углеводородов. Кроме того, в результате вторичных про­цессов образуются молекулы новых соединений, которые не содержат­ся в нефти или в нефтепродуктах.

Рассмотрим процесс расщепления составляющих нефти при нагре­вании на примерах.

При нагревании нефти сначала расщепляются углеводороды парафи­нового ряда с длинной цепью

По мере повышения температуры разрыв цепи углеводородов сдви­гается к краю цепи, вплоть до метана СН>4>, т. е. С>14>30 >С>13>26> + СН>4,> а при температуре выше 820° С метан разлагается на углерод и водород СН>4> --> С + 2Н>2>

Нафтеновые углеводороды при нагревании дегидрируются, обра­зуя ароматические углеводороды:

Ароматические углеводороды более устойчивы к нагреванию, по­этому они почти не изменяются. Непредельные углеводороды, образующиеся в процессе распада, в значительной степени вступают в реак­цию полимеризации или циклизации, образуя ароматические и дру­гие сложные соединения. Чем выше температура крекинга, тем выше скорость реакции и больше образуется газообразных продуктов. При­менение давления з
атрудняет процесс расщепления и благоприятно влияет на вторичные реакции. Крекинг ведут для получения бензина и газов.

Термический крекинг в смешанной фазе (жидкой и паровой) прово­дят под давлением до 70 am при температуре 350—500° С. На рис.9 показана схема крекинга мазута. Мазут насосом 1 подает­ся на одну из нижних тарелок ректификационной колонны 2, где сме­шивается с тяжелой фракцией. Затем смесь подается в трубчатую печь 3, где нагревается до температуры 470—480° С. Из средней части колонны 2 выводится более легкокипящая фракция, которая нагрева­ется в трубчатой печи 4 до 500—510°. Давление в печах поддержива­ется 50—70 am (5—7 Мн/м2). Продукты крекинга из печей 3 и 4 про­ходят редукционный вентиль 5 и поступают в испаритель 6, где проис­ходит отделение паров от крекинг остатка, который выводится из испарителя. Пары из испарителя направляются в ректификационную колонну на разделение. Пары бензина и газы проходят конденсатор 7 и сепаратор 8, где они разделяются.

Выход продуктов при крекинге следующий: крекинг-бензин 30— 35%, крекинг газы 10—15%, крекинг-остаток 50—56%. Крекинг газы содержат этилен, пропан, пропилен, бутан, бутилен и др. Они служат ценным сырьем для синтеза органических соединений. Крекинг-остаток служит котельным топливом.

Парофазный крекинг — пиролиз проводят при температуре 670— 720° С и атмосферном давлении. В процессе пиролиза жидкие продук­ты обогащаются ароматическими соединениями, а газы — непредель­ными углеводородами. Пиролиз проводится с целью получения сырья для химической промышленности.

Каталитический крекинг проводится в паровой фазе при 450-500е С и давлении 0,5-1,0 am (0,05-0,1 Мн/м2) в присутствии алюмо-силикатных катализаторов, представляющих собой твердые высоко. пористые вещества. Катализаторы адсорбируют углеводороды и на поверхности происходят реакции расщепления. Одновременно мот проходить реакции ароматизации. При каталитическом крекинге наряду с жидкими продуктами (вы. ход бензина — 70%) образуются газы (12—15%) и кокс (4—6%) Кокс откладывается на поверхности катализатора и снижает его активность. Для выжигания кокса через катализатор при температуре 550— 600 С пропускают воздух.

В печи 1 подаваемое на крекинг сырье нагревают до 350—360С и затем направляют в реактор 2, в который из бункеpa 3 поступает зернистый катализатор. Под действием собственного веса катализатор опускается в низ реактора и перед поступлением в регенератор (самотеком) обрабатывается паром. Продукты крекинга из реактора 2 направляются на разделение в ректификационную ко­лонну (на схеме не показана). Для регенерации катализатора сверху в регенератор 4 воздуходувкой 5 подается воздух, который реагирует с коксом, расположенным на поверхности катализатора, очищая его. Образовавшиеся дымовые газы выводятся снизу генератора. Из нижней части регенератора 4 катализатор захватывается сжатым воз­духом, подаваемым воздуходувкой 7, и по трубе 6 направляется в бун­кер 3 и снова возвращается в реактор 2.

Для уменьшения отложений кокса на катализаторе применяют крекинг под давлением в присутствии водорода. Такой процесс получил название риформинга. Наибольшее применение риформинг находит с платиновыми, хромовыми и молибденовыми катализаторами. Для риформинга используют фракции легких нефтепродуктов. Процесс проводится под давлением 40—70 am (4—7 Мн/м2) при температуре 480—520° С.

В процессе риформинга происходит образование ароматических углеводородов, которые улучшают качество бензинов. Газы риформинга содержат СН>4>, C>2>H>6>, С>3>8>, С>4>10>. Их используют для синтеза органических соединений.

Список использованной литературы

    Баринов Н.А. Технология металлов. Металлургиздат.1963

    Сидоров И.А. Основы технологии важнейших отраслей промышленности, Москва, “высшая школа”, 1971

    Кован В.М. (и др.) Основы технологии машиностроения “Машиностроение”, 1965

    Никифоров В.М. (и др.) Технология важнейших отраслей промышленности, ч.1, изд. ВПШ при ЦК КПСС, 1959

    Данилевский В.В. Технология машиностроения.

“Высшая школа”, 1965

Если Вам пригодился мой реферат, сообщите мне об этом, буду Вам очень признателен!

My E-mail: talk2000@mail.ru