Азот и фосфор
Министерство общего и профессионального образования
Российской федерации
Воронежский государственный университет
Химический факультет
Курсовая работа
«Азот и фосфор»
Кафедра общей химии
Автор: Юденко В. И.
Научный руководитель: к.х.н. Малевская Л. А.
Воронеж 1999
Оглавление
Введение……………………………………………………………..3
Азот
История открытия азота ………………………………………………..3
Особенности азота………………………………………………………4
Распространение азота в природе……………………………………...4
Получение азота…………………………………………………………5
Физические свойства …………………………………………………...5
Химические свойства…………………………………………………...5
Водородные соединения азота…………………………………………6
Кислородные соединения азота………………………………………..10
Соединения с неметаллами…………………………………………….13
Соединения с металлами……………………………………………….14
Применение азота и азотсодержащих веществ ………………………14
Фосфор
История открытия фосфора……………………………………………15
Особенности фосфора………………………………………………….15
Природные соединения и получение фосфора……………………….15
Физические и химические свойства…………………………………..16
Фосфорсодержащие кислоты и их соли………………………………17
Соединения с неметаллами……………………………………………19
Соединения с металлами………………………………………………20
Применение фосфора и фосфорсодержащих веществ………………20
Литература…………………………………………………………..21
Введение
Пятая группа Периодической системы включает два типических элемента азот и фосфор – и подгруппы мышьяка и ванадия. Между первым и вторым
типическими элементами наблюдается значительное различие в свойствах.
В состоянии простых веществ азот – газ, а фосфор – твердое вещество. Эти
два вещества получили большую область применения, хотя когда азот
впервые был выделен из воздуха его посчитали вредным газом, а на
продаже фосфора удавалось заработать большое количество денег (в фосфоре ценили его способность светится в темноте).
Азот
История открытия азота
Впервые азот был более или менее изучен Даниэлем Резерфордом. Выполняя задание своего учителя Д. Блека, открывшего взаимодействие двуокиси углерода с известковой водой, Д. Резерфорд исследовал, какое изменение претерпевает воздух, после того как в нем жило и погибло живое существо. Ответ на этот вопрос гласил: дыхание животных не только превращает здоровый воздух в «фиксируемый воздух» (в двуокись углерода), но после того, как фиксируемая порция поглощена раствором едкого кали, остающаяся часть, хотя и не вызывает осадка с раствором гашеной извести, гасит пламя и губит жизнь. Такова первая характеристика азота, слагающаяся исключительно из отрицательных признаков: азот противопоставляется двуокиси углерода, сходной с ним по отрицательным признакам (оба газа не поддерживают горение и дыхание). Почти одновременно азот был изолирован и изучен двумя другими выдающимися учеными Г. Кавендишем и К. Шееле, оба они в отличие от Д. Резерфорда поняли, что азот – это лишь выделенная из воздуха, заранее присутствующая в нем его составная часть. В особенности примечательно сообщение Г.Кавендиша, найденное в его неопубликованных рукописях с пометкой: «послано Пристли». «Я переводил обыкновенный воздух из одного сосуда через раскаленные угли в другой, потом через свежий горящий уголь – в следующий сосуд, поглощая каждый раз образующийся фиксируемый воздух (углекислый газ) кусковой известью. Удельный вес полученного газа оказался лишь незначительно разнящимся от удельного веса обыкновенного воздуха: из обоих газов азот несколько легче воздуха. Он гасит пламя и делает обыкновенный воздух неспособным возбуждать горение, так же как и фиксируемый воздух (CO>2>), но в меньшей степени». Оставалось только дать новому газу название. Никто в те времена не придавал такого значения номенклатуре, как А. Лавуазье, и никто не совершил (вторично) такой грубой номенклатурной ошибки, как присвоение азоту его имени «безжизненный». Это наименование все же закрепилось за азотом во французской и русской литературе; в англосаксонских странах предпочли для азота название Nitrogen – «рождающий селитру», немцы же дали азоту название Stickstoff – «удушающая материя».
Особенности азота
У атома азота на один электрон больше, чем у атома углерода; согласно правилу Гунда, этот электрон занимает последнюю вакантную 2р-орбиталь. Атом азота в невозбужденном состоянии характеризуется тремя вырожденными 2р-электронами при наличии двух спаренных электронов на 2s-орбитали. Три неспаренных электрона на 2р-орбитали, прежде всего, ответственны за трехковалентность азота. Именно поэтому характеристическим летучим водородным соединением является аммиак, в котором атом азота образует три ковалентные связи по обменному механизму с тремя атомами водорода. У азота нет возможности перехода электронов в возбужденное состояние, так как ближайшие орбитали при n = 3 слишком высоки по энергии. Поэтому максимальная валентность азота равна четырем. При этом три ковалентные связи могут быть образованы по обменному механизму, а одна – по донорно-акцепторному. Однако азот в состоянии N+ может образовывать все четыре связи по обменному механизму. Азот проявляет большое разнообразие степеней окисления: -3, -2, -1, 0, +1, +2, +3, +4 и +5. Наиболее часто встречаются производные от степеней окисления -3,+5 и +3 (NH>3>, HNO>3> и NaNO>2>).
Распространение азота в природе
Среди всех элементов, образующих земной шар, один азот (если не считать инертных газов) как бы избегает образовывать химические соединения и входит в состав земного шара преимущественно в свободном виде. А так как азот в свободном состоянии - газ, основная его масса сосредоточена в газовой оболочке той сложной химической системы, которую представляет собой земной шар, - в его атмосфере. Содержание азота в земной коре в виде соединений составляет 0,01 массовой доли, %. Атмосфера более чем на 75 массовых долей, % состоит из газообразного азота, что равно ~4*1015 т. Связанный азот образует минералы в форме нитратов: чилийская NaNO>3>, индийская KNO>3> и норвежская Ca(NO>3>)>2 > селитры. Азот в форме сложных органических производных входит в состав белков, в связанном виде содержится в нефти (до 1,5 массовой доли, %), каменных углях (до 2,5 массовой доли, %).
Молекула N>2> является самой устойчивой формой его существования, чем обусловлена так называемая проблема связанного азота. Потребление связанного азота растениями и животными приводит к обеднению окружающей среды соединениями азота. Этот дефицит должен восполняться искусственным путем, поскольку естественное пополнение запасов связанного азота (грозы, деятельность азотобактерий и т. п.) не компенсирует его потери. Исключительное значение в решении проблемы связанного азота имеют две реакции: синтез аммиака и его каталитическое окисление.
Получение азота
В технике азот получают фракционной перегонкой жидкого воздуха. При этом в первую очередь отгоняются наиболее летучие вещества - азот и благородные газы. Последние не мешают в случае применения азота для создания инертной среды в химических и других производствах. От примесного кислорода (несколько процентов) азот освобождают химически, пропуская его через систему с нагретой медью. При этом практически весь кислород связывается в CuO.
В лаборатории азот получают нагреванием смеси крепких растворов хлорида аммония и нитрита натрия: NH>4>Cl + NaNO>2> = N>2> + 2H>2>O + NaCl или разложением нитрита аммония при нагревании: NH>4>NO>2 >= N>2> + 2H>2>O
Наиболее чистый азот получается при термическом разложении азидов металлов, например: 2NaN>3> = 2Na + 3N>2>
Физические свойства
Азот - газ без цвета и запаха. Точка кипения жидкого азота -195,8 град. С, точка плавления твердого азота -210,5 град. С. Твердый азот получается в виде порошка и в виде льда. Азот плохо растворим в воде и органических растворителях. В 1 л воды при 0 град. С растворяется всего 23,6 см3 азота. 1 л азота при нормальных условиях весит 1,2505 г.
Химические свойства
Азот находиться в верхнем правом углу периодической системы, в котором сосредоточены неметаллы с наибольшими сродствами к электронам. Поэтому он должен быть мало склонен выступать в качестве электроположительного элемента, а как элемент электроотрицательный должен уступать в химической активности только немногим неметаллам, в первую очередь правее его стоящим кислороду и фтору. Между тем химическая характеристика азота, как и исторически первые сообщения о нем, всегда начинается не с положительных признаков, а с отрицательных: с подчеркивания его химической инертности. Первая причина химической инертности азота в обычных условиях - особо прочное сцепление его атомов в молекуле N>2>.
N>2>=2N-711 кДж.
При комнатной температуре азот взаимодействует только с литием, с образованием нитрида лития: N>2 >+ 6Li = 2Li>3>N, с другими металлами азот взаимодействует при нагревании: N>2> + 3Ca = Ca>3>N>2>. В реакциях взаимодействия азота с металлами, азот проявляет окислительные свойства, также окислительные свойства он проявляет при взаимодействии с водородом (при нагревании, повышенном давлении и в присутствии катализатора): N>2> + 3H>2> = 2NH>3>. Азот также взаимодействует и с другими неметаллами, проявляя при этом восстоновительные свойства: N>2>+O>2> = 2NO, N>2> + 3F>2> =2NF>3>.
Существуют и другие соединения азота с электроотрицательными элементами, но они являются неустойчивыми, и многие из них, особенно хлористый азот и йодистый азот, взрывчаты.
Водородные соединения азота
Летучим характеристическим соединением азота является аммиак. По значимости в неорганической химической индустрии и неорганической химии аммиак - самое важное водородное соединение азота. По своей химической природе он представляет собой нитрид водорода H>3>N. В химическом строении аммиака sp3-гибридные орбитали атома азота образуют три -связи с тремя атомами водорода, которые занимают три вершины чуть искаженного тетраэдра. Четвертая вершина тетраэдра занята неподеленной электронной парой азота, что обеспечивает химическую не насыщенность и реакционноспособность молекул аммиака. При обычных условиях аммиак - бесцветный газ с резким запахом. Он токсичен: раздражает слизистые оболочки, а острое отравление вызывает поражение глаз и воспаление легких. При охлаждении до -33 град. С аммиак сжижается, а при -78 град. С затвердевает. В жидком и твердом аммиаке между молекулами действуют водородные связи, вследствие чего аммиак обладает рядом экстремальных свойств по сравнению с другими водородными соединениями элементов пятой группы главной подгруппы. Вследствие полярности молекул и достаточно высокой диэлектрической проницаемости жидкий аммиак является хорошим неводным растворителем. В жидком аммиаке хорошо растворяются щелочные и щелочно - земельные металлы, сера, фосфор, йод, многие соли и кислоты. Вещества с функциональными полярными группами в жидком аммиаке подвергаются электролитической диссоциации.
По растворимости в воде аммиак превосходит любой другой газ: при 0 град. С 1 объем воды поглощает 1200 объемов газообразного аммиака. Прекрасная растворимость аммиака в воде обусловлена возникновением межмолекулярных водородных связей. При этом возможны два механизма возникновения водородных связей между молекулами аммиака и воды:
Поскольку донорная способность молекул аммиака выражена сильней, чем у воды, а связь О-Н более полярна по сравнению с полярностью связи N-Н в аммиаке, межмолекулярная водородная связь образуется по первому механизму. Таким образом, физико-химические процессы в водном растворе аммиака можно представить следующим образом.
Возникновение гидроксид - ионов создает щелочную реакцию раствора аммиака в воде. Константа ионизации невелика (рК 5). В условиях пониженных температур из водных растворов аммиака можно выделить кристаллогидраты NH>3> Н>2>О (t>пл>=-77 град. С), 2NН>3> Н>2>О (t>пл>=-78 град. С) и NН>3> 2Н>2>О (t>пл>=-97 град. С). Кристаллогидраты состоят из цепей молекул аммиака и воды, сшитых водородными связями в трехмерную сетку, в которых отсутствуют структурные мотивы NН>4>ОН. Это означает, что так называемый гидроксид аммония не существует как химический индивид, как нет гидроксида оксония ОН>3>ОН и гидроксида фторония FН>2>ОН. Таким образом, водные растворы аммиака обладают основными свойствами не за счет образования мнимого соединения NН>4>ОН, а вследствие исключительно выраженной донорной активности атома азота в NН>3>.
Равновесие в водном растворе аммиака можно сместить вправо добавлением кислоты. При этом в растворе образуются соли аммония. Они получаются также при непосредственном взаимодействии газообразных веществ:
NН>3> + НСl = NН>4>Сl
Сам ион аммония и большинство его солей бесцветны. В твердом состоянии соли аммония образуют структуры, характерные для веществ со значительной долей ионной составляющей связи. Поэтому они хорошо растворяются в воде, почти сполна подвергаются электролитической ионизации. Структура иона NН>4>+ - тетраэдрическая, в которой все вершины тетраэдра заняты атомами водорода, а азот находится в его центре. Положительный заряд равномерно распределен между всеми атомами водорода. По свойствам соли аммония похожи на соли калия вследствие близости ионных радиусов NН>4>+ (0,142 нм) и К+ (0,133 нм). Существенная разница заключается только в том, что соли калия, образованные сильными кислотами, не подвержены гидролизу, а соли аммония в водных растворах гидролизуются вследствие слабо выраженных основных свойств аммиака.
Соли аммония отличаются невысокой термической устойчивостью. Природа конечных продуктов термического разложения солей аммония в основном определяется свойствами аниона. Если анион происходит от кислоты - окислителя, то имеет место окисление аммиачного азота, например: NН>4>NО>3> = N>2>О + 2Н>2>О
В этой реакции аммиачный азот отдает 4 электрона нитратному азоту, а потому последний выступает как окислитель. С другой стороны, эта реакция представляет собой пример внутримолекулярного конпропорционирования. Для аммонийных солей от кислот, не являющихся окислителями, при их термическом разложении выделяется аммиак и кислота: (NН>4>)>3>РО>4> = 3NН>3> + Н>3>РО>4>
При обработке солей аммония щелочами выделяется аммиак:
2NН>4>Сl + Са(ОН)>2> = 2NН>3> + СаСl>2> + 2Н>2>О
Эта реакция может служить простым способом получения аммиака в лаборатории. В промышленности аммиак получают прямым синтезом из компонентов - простых веществ.
На воздухе аммиак не горит, но в атмосфере кислорода он окисляется до свободного азота: 4NН>3> + 3О>2> = 2N>2> + 6Н>2>О
При каталитическом окислении реакция идет иначе:
4NН>3> + 5О>2> = 4NО + 6Н>2>О
Аммиак выступает как восстановитель и в реакциях с другими окислителями. Реже аммиак выступает как окислитель, например:
Nа + NН>3> = NаNН>2> + 1/2Н>2>
В этой реакции металлический натрий вытесняет водород из жидкого аммиака. При этом водород аммиака понижает свою степень окисления, и аммиак играет роль окислителя. С другой стороны, подобные реакции иллюстрируются проявлением аммиаком кислотных свойств. Амиды металлов, например NаNН>2>, являются солями аммиака, отвечающими его кислотной функции. Совершенно очевидно, что кислотная природа у аммиака выражена значительно слабее, чем у Н>2>О и НF. Константа кислотной ионизации ничтожно мала (рК>а> 35), а потому соли аммиака как кислоты в воде нацело гидролизуются:
NaNH>2> + H>2>O = NaOH + NH>3>
Кислотной функции аммиака отвечают не только амиды, но и имиды и нитриды металлов. Если в амидах замещен один атом водорода (NаNН>2>) , в имидах - два (Li>2>NН), то в нитридах - все три (AlN).
При осторожном окислении аммиака мягким окислителем, например гипохлоридом натрия, получают другое водородное соединение аммиака - гидразин или диамид:
2NН>3> + NаОСl = N>2>Н>4> + NаСl + Н>2>О
Диамид представляет собой бесцветную, легко испаряемую токсичную жидкость с высокой диэлектрической проницаемостью(Е=52 при 25 град.С)
По химическим свойствам гидразин во многом похож на аммиак. В водных растворах гидразина также возникают водородные связи, как и в случае аммиака. При взаимодействии гидразина с 1 молекулой воды с участием водородной связи образуется катион [N>2>Н>5>]+, а с двумя - [N>2>Н>6>]2+. > >
Существование гидроксидов этих катионов как индивидуальных веществ не установлено, тем не менее, известны два типа солей гидразина, например N>2>Н>5>Сl и N>2>Н>6>Сl>2>.
При восстановлении раствора азотной кислоты атомарным водородом получается гидроксиламин:
НNО>3> + 6Н = NН>2>ОН + 2Н>2>О
Гидроксиламин - бесцветные кристаллы (t>пл> = 33 град.С), термически нестойкие, выше 100 град.С взрываются. Водные растворы гидроксиламина более устойчивы. В растворе также возникают межмолекулярные водородные связи, и устанавливается динамическое равновесие:
Однако основная функции гидроксиламина выражена еще слабее (рК>b> 8), чем у аммиака и гидразина. С кислотами гидроксиламин дает соли гидроксиламмония. Наиболее известным препаратом является хлорид гидроксиламмония [NН>3>ОН]Сl. Растворы солей гидроксиламмония более устойчивы, чем твердые вещества, и имеют кислую реакцию вследствие гидролиза.
Поскольку атом азота в гидроксиламине имеет степень окисления -1, он может функционировать и как окислитель, и как восстановитель. Но для него более характерны восстановительные свойства, особенно в щелочной среде.
Среди водородных соединений азота наименьшая отрицательная степень окисления азота представлена в азиде водорода НN>3>. В этом соединении степень окисления азота равна - 1/3. Необычайная степень окисления обусловлена структурной неравноценностью атомов азота в этом веществе.
С позиции МВС эта структурная неравноценность может быть представлена схемой:
Главное в этой схеме - делокализация П-связей вдоль прямой, соединяющей атомы азота. Правомерность схемы доказывается расстоянием между атомами азота 1-2 и 2-3, являющимися промежуточными между длинами связей
Водный раствор НN>3> называется азотистоводородной кислотой. Она получается окислением гидразина азотистой кислотой:
N>2>Н>4> + НNО>2> = НN>3 >+ 2Н>2>О
По силе она приближается к уксусной. В разбавленных растворах азотистоводородная кислота медленно диспропорционирует:
НN>3 >+ Н>2>О = N>2> + NН>2>ОН
В безводном состоянии она может взорваться не только при нагревании, но и от сотрясения:
2НN>3 >= 3N>2> + H>2>
Смесь азотистоводородной и концентрированной соляной кислот способна растворять даже благородные металлы. Соли азотистоводородной кислоты - азиды - по растворимости в воде похожи на галогениды. Так, азиды щелочных металлов хорошо растворяются в воде, Аg N>3>, Рb(N>3>)>2> и Нg(N>3>)>2> - плохо. Азиды щелочных и щелочно-земельных металлов при медленном нагревании устойчивы вплоть до плавления. Азиды тяжелых металлов легко взрываются при ударе:
Рb(N>3>)>2> = Рb + 3N>2>
Кислородные соединения азота
С кислородом азот образует ряд оксидов: N>2>О и NО - бесцветные газы, N>2>О>3> голубое твердое вещество (ниже -100 град.С), NО>2 >- бурый газ, N>2>О>4> - бесцветный газ, N>2>О>5> - бесцветные кристаллы.
Оксид N>2>О (закись азота, "веселящий газ", поскольку он обладает наркотическим действием) получают термическим разложением нитрата аммония или гидроксиламмония:
[НN>3>ОН]NО>2> = N>2>О + 2Н>2>О (внутримолекулярное конпропорционирование)
Оксид азота (+1) - эндотермическое соединение. Однако при комнатной химически температуре мало активен. При нагревании его реакционная способность сильно возрастает. Он окисляет водород, металлы, фосфор, серу, уголь, органические и другие вещества, например:
Сu + N>2>О = N>2> + СuО
При нагревании N>2>О выше 700 град.С одновременно с реакцией разложения протекает его диспропорционирование:
2N>2>О = 2N>2> + О>2>;> >2N>2>О = 2NО + N>2>
С водой оксид азота (+1) не взаимодействует, хотя известна кислота Н>2>N>2>О>2>,
в которой азот тоже имеет степень окисления +1. Эта кислота называется азотноватистой, и ей приписывается структура с двумя равноценными атомами азота:
Свободную азотноватистую кислоту можно получить следующим образом:
NН>2>ОН + НNО>2> = Н>2>N>2>О>2 >+ Н>2>О
Она хорошо растворяется в воде, но кислота слабая. Азотноватистая кислота весьма неустойчива, при незначительном нагревании взрывается:
Н>2>N>2>О>2 >= N>2>О + Н>2>О
Соли Н>2>N>2>О>2> - гипонитриты и гидрогипонитриты - в воде сильно подвержены гидролизу. Большинство гипонитритов мало растворимо в воде, намного лучше растворяются гидрогипонитриты.
Четные степени окисления для азота сравнительно мало характерны. К числу таких соединений относится оксид азота (+2). Молекула NО содержит нечетное число электронов и, по существу, представляет собой обладающий малой активностью радикал. В молекуле одна ковалентная по донорно-акцепторному механизму и две П-связи. Несмотря на эндотермичность и положительную величину энергии Гиббса образования NО из простых веществ, оксид азота (+2) не распадается на элементы. Дело в том, что, согласно ММО, порядок связи в NО довольно высок и равен 2,5. Молекула NО прочнее молекулы О>2>, так как у первой на разрыхляющей МО П>2р>*> >всего один электрон, а у второй - два электрона.
В лаборатории оксид азота (+2) чаще всего получают действием разбавленной кислоты на медные стружки:
3Сu + 8НNО>3> = 3Сu(NО>3>)>2> + 2NО + 4Н>2>О
На воздухе оксид азота (+2) мгновенно окисляется:
2NО + О>2> = 2NО>2>
Окисляется NО и галогенами, образуя нитрозилгалогениды:
2NО + Г>2> = 2NОГ
При взаимодействии с восстановителями NО восстанавливается до N>2>О, N>2>, NН>2>ОН, NН>3> в зависимости от восстановительной способности партнера и условий провидения процессов
Водный раствор оксида азота (+2) нейтрален. Никаких соединений с водой он не образует, хотя известны соли (гипонитраты) не выделенной в свободном состоянии азотноватой кислоты Н>2>N>2>О>3>, в которой азот также имеет степень окисления +2.
Оксид азота N>2>О>3 > существует в твердом состоянии (ниже -100 град.С). В жидком и парообразном состояниях оксид азота (+3) в значительной степени диссоциирован за счет диспропорционирования:
N>2>О>3> NО + NО>2>
Получают N>2>О>3> охлаждением эквимолярных количеств NО и NО>2>. А равномерный ток смеси нужного состава получается при взаимодействии 50%-ной НNО>3> с оксидом мышьяка (+3):
2НNО>3> + Аs>2>О>3> = 2НАsО>3 >+ NО + NО>2>
Оксиду азота (+3) отвечает известная лишь в растворе неустойчивая азотистая кислота НNО>2>. Получить ее можно растворением в воде равных объемов NО и NО>2> в воде:
NО + NО>2 >+ Н>2>О = 2НNО>2>
При хранении и нагревании НNО>2> диспропорционирует:
3НNО>2> = НNО>3> + 2NО + Н>2>О
Наиболее характерные для нее окислительные свойства:
НNО>2 >+ 2НI = I>2 >+ 2NО + 2Н>2>О
Однако сильные окислители переводят азотистую кислоту в азотную:
5НNО>2 >+ 2КмnО>4> + 3Н>2>SО>4 >= К>2>SО>4 >+ 2МnSО>4> + 5НNО>3 >+ 3Н>2>О
Оксид азота (+4) получают растворением меди в концентрированной азотной кислоте: Сu + 4НNО>3 >= Сu(NО>3>)>2> + 2NО>2 >+ 2Н>2>О
Он является хорошим окислителем, в нем горят фосфор, сера, уголь и некоторые органические вещества. Выше 150 град.С диоксид азота начинается разлагаться:
2NО>2 >= 2NО + О>2>
Поскольку молекула диоксида азота с неспаренным электроном по существу представляет собой радикал, она легко димеризуется:
2NО>2> N>2>О>4>
Димер бесцветен и диамагнитен в отличие от окрашенного в красно-бурый цвет и парамагнитен.
Диоксид азота при взаимодействии с водой диспропорционирует:
2NО>2 >+ Н>2>О = НNО>2> + НNО>3>
При растворении NО>2 >в горячей воде получается азотная кислота, ибо первоначально образующаяся азотиста кислота диспропорционирует с выделением оксида азота (+2) и образованием азотной кислоты.
Оксид азота (+5) имеет молекулярную структуру только в газовой фазе. В твердом состоянии N>2>О>5 >имеет структуру, образованную ионами NО>2>+ и NО>3>-. N>2>О>5 > - легко возгоняющиеся кристаллы, причем испаряются молекулы. Таким образом, при возгонке оксида азота (+5) ионы NО>2>+ и NО>3>- объединяются в молекулы N>2>О>5 >. Получают оксид азот (+5) дегидратацией азотной кислоты с помощью Р>2>О>5 >или окислением NО>2 >озоном:
2НNО>3 >+ Р>2>О>5 >= 2НРО>3 >+ N>2>О>5>; 6NО>2 >+ О>3 >= 3N>2>О>5>
Оксид азота (+5) является энергичным окислителем, многие реакции с его участием протекают весьма бурно. При растворение в воде дает азотную кислоту:
N>2>О>5> + Н>2>О = 2НNО>3>
Азотная кислота - одна из сильных кислот. Молекула НNО>3> и нитрат-ион имеют строение, представленное схемами
Безводная азотная кислота представляет собой бесцветную летучую жидкость. При хранении (особенно на свету) и при нагревании частично разлагается:
4НNО>3> = 4NО>2 >+ 2Н>2>О + О>2>
Так называемая "дымящая" азотная кислота (красного цвета) представляет собой раствор выделяющегося диоксида азота в концентрированной НNО>3>.
В лаборатории НNО>3> получают нагреванием нитрата натрия с серной кислотой:
NaNО>3> + Н>2>SО>4 >= НNО>3> + NaНSО>4>
В промышленности азотную кислоту получают из аммиака. Сначала аммиак каталитически окисляют до оксида азота (+2), который далее окисляется до
NО>2>. Затем оксид азота (+4) растворяют в горячей воде и получают азотную кислоту.
Азотная кислота является сильным окислителем и окисляет почти все металлы и неметаллы. Последние, как правило, переводятся ею в производные высшей степени окисления, например:
S + 6НNО>3 >= Н>2>SО>4> + 6NО>2 >+ 2Н>2>О
Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам устойчивы к действию азотной кислоты. Некоторые металлы (например, железо, алюминий, хром) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. Обычно процесс восстановления НNО>3> протекает в нескольких параллельных направлениях, и в результате получается смесь различных продуктов восстановления. Природа этих продуктов, их относительное содержание в смеси зависят от силы восстановителя, концентрации азотной кислоты и температуры.
Более сильным окислителем является смесь концентрированных азотной и соляной кислот - "царская водка". Она растворяет даже золото и платину, которые не растворяются в азотной, а тем более в соляной кислоте. Ее окислительная активность обусловлена снижением редокс - потенциала растворяющихся металлов, т. е. усилением их восстановительных свойств за счет образования прочных хлоридных комплексов:
Аu + НNО>3> + 4НСl = Н[АuСl>4>] + NО + 2Н>2>О
Соли азотной кислоты - нитраты - известны почти для всех металлов. Большинство из них бесцветны и хорошо растворяются в воде. В кислых водных растворах нитраты являются более слабыми окислителями, чем азотная кислота, а в нейтральной среде вообще не обладают окислительными свойствами. Сильными окислителями они являются в расплавах, когда происходит разложение с выделением кислорода. Оксид азота (+5) при взаимодействии со 100%-ным пероксидом водорода образует пероксоазотную (надазотную) кислоту:
N>2>О>5 >+ 2Н>2>О>2> = 2НNО>4 >+ Н>2>О
Пероксоазотная кислота нестойка, легко взрывается, водой полностью гидролизуется:
О
Н-О-О-N + Н>2>О = Н>2>О>2> + НNО>3>
О
Соединения с неметаллами
Известны все галогениды азота NГ>3>. Трифторид NF>3> получают взаимодействием фтора с аммиаком:
3F>2> + 4NН>3> = 3 NН>4>F + NF>3>
Трифторид азота - бесцветный токсичный газ, молекулы которого обладают пирамидальным строением. У основания пирамиды дислоцированы атомы фтора, а вершина занята атомом азота с неподеленной электронной парой. К различным химическим реагентам и к нагреванию NF>3> весьма устойчив.
Остальные тригалогениды азота эндотермичны, а потому неустойчивы и реакционноспособны. NCl>3> образуется при пропускании газообразного хлора в крепкий раствор хлорида аммония:
3Cl>2> + NН>4>Сl = 4НСl + NCl>3>
Трихлорид азота представляет собой легколетучую (t>кип >= 71 град.С) жидкость с резким запахом. Небольшой нагрев или удар сопровождается взрывом с выделением большого количества теплоты. При этом NCl>3> распадается на элементы. Тригалогениды NBr>3> и NI>3 >еще менее стабильны.
Производные азота с халькогенами очень неустойчивы вследствие их сильной эндотермичности. Все они плохо изучены, при нагреве и ударе взрываются.
Соединения с металлами
Солеобразные нитриды получают прямым синтезом из металлов и азота. Водой и разбавленными кислотами солеобразные нитриды разлагаются:
Мg>3>N>2> + 6N>2> = 3Мg(ОН)>2> + 2NH>3>
Са>3>N>2> + 8НСl = 3СаСl>2> + 2NH>4>Сl
Обе реакции доказывают основную природу нитридов активных металлов.
Металлоподобные нитриды получают нагреванием металлов в атмосфере азота или аммиака. В качестве исходных веществ могут применяться оксиды, галогениды и гидриды переходных металлов:
2Та + N>2> = 2ТаN; Мn>2>О>3> + 2NH>3 >= 2МnN + 3Н>2>О
СrCl>3> + NH>3 >= СrN + 3НСl; 2ТiН>2 >+ 2NH>3 >= 2ТiN +5Н>2>
Применение азота и азотсодержащих соединений
Область применения азота очень велика - производство удобрений, взрывчатых веществ, нашатырного спирта, который используют в медицине. Азотсодержащие удобрения являются самыми ценными. К таким удобрениям относится аммиачная селитра, мочевина, аммиак, натриевая селитра. Азот является неотъемлемой часть белковых молекул, поэтому он и необходим растениям для нормального роста и развития. Такое важное соединение азота с водородом, как аммиак, используют в холодильных установках, аммиак, циркулируя по замкнутой системе труб, при своем испарение отнимает большое количество теплоты. Калийная селитра идет на производство дымного пороха, а порох используют в охотничьих ружьях, для разведки рудных ископаемых, залегающих под землей. Без дымный порох получают из пироксилина - сложного эфира целлюлозы и азотной кислоты. Органические взрывчатые вещества на основе азота используют для прокладки тоннелей в горах (тротил, нитроглицерин).
Фосфор
История открытия фосфора
Фосфор был открыт в 1669 г. алхимиком Брандтом, когда он в поисках "философского камня" сильно нагревал сухой остаток мочи с углем без доступа воздуха. Выделенное вещество светилось на воздухе и затем загоралось. За это свойство Брандт дал ему название "фосфор", т.е. носящий свет ("светоносец").
После открытия еще сто лет фосфор был редким и дорогим веществом, т.к. содержание в моче его ничтожно мало, а добывание сложно. И лишь после 1771 г., когда шведский химик Шееле разработал способ получение фосфора из костей, стало возможным получение его в значительных количествах.
Особенности фосфора
Второй типический элемент типический элемент в пятой группе является неметаллом. Наивысшая степень окисления, которую может проявлять фосфор, равна +5. Соединения, содержащие фосфор в степени окисления меньшей, чем +5 проявляют себя как восстановители. В то же время соединения фосфора +5 в растворах окислителями не являются. Кислородные соединения фосфора более устойчивы, чем таковые азота. Водородные же соединения менее стабильны.
Природные соединения и получение фосфора
По распространенности в земной коре фосфор опережает азот, серу и хлор. В отличие от азота фосфор встречается в природе только в виде соединений. Наиболее важные минералы фосфора - апатит Са>5>Х(РО>4>)>3> (Х - фтор, реже хлор и гидрооксильная группа) и фосфорит основой которого является Са>3>(РО>4>)>2>. Кроме того, фосфор входит в состав некоторых белковых веществ и содержится в растениях и организмах животных и человека.
Из природного фосфорсодержащего сырья свободный фосфор получают высокотемпературным восстановлением (1500 град.С) коксом в присутствии песка. Последний связывает оксид кальция в шлак - силикат кальция. В случае восстановления фосфорита суммарная реакция может быть представлена уравнением:
Са>3>(РО>4>)>2> + 5С + 3SiО>2> = СаSiО>3> + 5СО + Р>2>
Образующийся угарный газ и парообразный фосфор поступают в холодильник с водой, где происходит конденсация с образованием твердого белого фосфора.
Физические и химические свойства
Ниже 1000 град.С пары фосфора содержат четырехатомные молекулы Р>4>, имеющие форму тетраэдра. При более высоких температурах происходит термическая диссоциация и в смеси возрастает содержание двухатомных молекул Р>2>. Распад последних на атомы фосфора наступает выше 2500 град.С.
Белая модификация фосфора, получающаяся при конденсации паров, имеет молекулярную кристаллическую решетку, в узлах которой дислоцированы молекулы Р>4>. Из-за слабости межмолекулярных сил белый фосфор летуч, легкоплавок, режется ножом и растворяется в неполярных растворителях, например в сероуглероде. Белый фосфор весьма реакционноспособное вещество. Он энергично взаимодействует с кислородом, галогенами, серой и металлами. Окисление фосфора на воздухе сопровождается разогреванием и свечением. Поэтому белый фосфор хранят под водой, с которой он не реагирует. Белый фосфор очень токсичен.
При длительном хранении, а также при нагревании белый фосфор переходит в красную модификацию. Красный фосфор представляет собой полимерное вещество, нерастворимое в сероуглероде, менее токсичное, чем белый фосфор. Окисляется красный фосфор труднее белого, не светится в темноте и воспламеняется лишь при 250 град.С.
Наиболее стабильной модификацией фосфора является черный фосфор. Его получают аллотропным превращением белого фосфора при температуре 220 град.С и давлении 1200 МПа. По внешнему виду он напоминает графит. Кристаллическая структура черного фосфора слоистая, состоящая из гофрированных слоев. Как и в красном фосфоре, здесь каждый атом фосфора связан ковалентными связями с тремя соседями. Расстояние между атомами фосфора 0,387 нм. Белый и красный фосфор - диэлектрики, а черный фосфор - полупроводник с шириной запрещенной зоны 0,33 эВ. В химическом отношении черный фосфор наименее реакционноспособен, воспламеняется лишь при нагревании выше 400 град.С.
Окислительную функцию проявляет фосфор при взаимодействии с металлами: 3Са + 2Р = Са>3>Р>2>
Как восстановитель фосфор выступает в реакциях с активными неметаллами - галогенами, кислородом, серой, а также с сильными окислителями:
2Р + 3S = Р>2>S>3> 2Р + 5S = Р>2>S>5>
С кислородом и хлором взаимодействует аналогично.
Р + 5НNО>3> = Н>3>РО>4> + 5NО>2> + Н>2>О
В растворах щелочей при нагревании белый фосфор диспропорционирует:
8Р + 3Ва(ОН)>2 >+ 6Н>2>О = 2РН>3> + 3Ва(Н>2>РО>2>)>2 >
Фосфорсодержащие кислоты и их соли
Химический оксид фосфора (+3) имеет кислотную природу:
Р>2>О>3 >+ 3Н>2>О = 2Н>3>РО>3>
Фосфористая кислота - бесцветные легкоплавкие хорошо растворимые в воде кристаллы. По химическому строению она представляет собой искаженный тетраэдр, в центре которого находится атом фосфора с sр3 - гибридными орбиталями, а вершины заняты двумя гидроксогруппами и атомами водорода и кислорода. Атом водорода, непосредственно соединенный с фосфором, не способен к замещению, а потому фосфористая кислота максимум двухосновна и нередко ее изображают формулой Н>2>[НРО>3>]. Фосфористая кислота - кислота средней силы. Соли ее - фосфиты получают взаимодействием Р>2>О>3> со щелочами:
Р>2>О>3 >+ 4NаОН = 2Nа>2>НРО>3> + Н>2>О
Фосфиты щелочных металлов и кальция легко растворимы в воде.
При нагревании фосфористая кислота диспропорционирует:
4Н>3>РО>3 >= РН>3> + 3Н>3>РО>4>
Фосфористая кислота окисляется многими окислителями, в том числе галогенами, например:
Н>3>РО>3 >+ Сl>2 >+ Н>2>О = Н>3>РО>4 >+ 2НСl
Получают обычно фосфористую кислоту гидролизом тригалогенидов фосфора:
РГ>3 >+ 3Н>2>О = Н>3>РО>3 >+ 3НГ
При нагревании однозамещенных фосфитов получаются соли пирофосфористой (дифосфористой) кислоты - пирофосфиты:
2NаН>2>РО>3> = Nа>2>Н>2>Р>2>О>5> + Н>2>О
Пирофосфиты при кипячении с водой гидролизуются:
Nа>2>Н>2>Р>2>О>5> + 3Н>2>О = 2NаОН + 2Н>3>РО>3 >
Сама пирофосфористая кислота Н>4>Р>2>О>5 >(пентаоксодифосфорная), как и фосфористая, только двухосновна и сравнительно малоустойчива.
Известна еще одна кислота фосфора (+3) - плохо изученная полимерная метафосфористая кислота (НРО>2>)>n>.
Наиболее характерен для фосфора оксид Р>2>О>5> - пентаоксид дифосфора. Это белое твердое вещество, которое легко может быть получено и в стеклообразном состоянии. В парообразном состоянии молекулы оксида фосфора (+5) имеют состав Р>4>О>10>. Твердый Р>2>О>5> имеет несколько модификаций. Одна из форм оксида фосфора (+5) имеет молекулярную структуру с молекулами Р>4>О>10 >в узлах решетки. По внешнему виду эта модификация напоминает лед. Она обладает небольшой плотностью, легко переходит в пар, хорошо растворяется в воде и реакционноспособна. Р>2>О>5> - сильнейший дегидратирующий реагент. По интенсивности осушающего действия он намного превосходит такие поглотители влаги, как СаСl>2>, NаОН, Н>2>SО>4> и др. При гидратации Р>2>О>5> сначала образуется метафосфорная кислота:
Р>2>О>5> + Н>2>О = 2НРО>3>
дальнейшая гидратация которой последовательно приводит к пирофосфорной и ортофосфорной кислоте:
2НРО>3 >+ Н>2>О = Н>4>Р>2>О>7 >и Н>4>Р>2>О>7> + Н>2>О = 2Н>3>РО>4 >
Ортофосфорная кислота - одно из наиболее важных производных фосфора (+5). Это бесцветные, легкоплавкие, расплывающиеся на воздухе кристаллы, смешивающиеся с водой в любых соотношениях. В твердой кислоте и концентрированных растворах действуют межмолекулярные водородные связи. Поэтому крепкие растворы Н>3>РО>4 >отличаются высокой вязкостью. В водной среде ортофосфорная кислота - кислота средней силы. В водном растворе ортофосфаты - соли фосфорной кислоты - подвергаются гидролизу, причем рН среды при переходе от средней соли к кислой закономерно снижается.
Nа>3>РО>4 >+ Н>2>О = NаОН + Nа>2>НРО>4 ,> рН = 12,1
Nа>2>НРО>4> + Н>2>О = NаОН + NаН>2>РО>4 ,> рН = 8,9
При окислении влажного фосфора наряду с Р>2>О>5> и Р>2>О>3 >образуется фосфорноватая кислота (гексаоксодифосфорная) кислота Н>4>Р>2>О>6>, в которой степень окисления фосфора +4. В ее структуре атомы фосфора связаны друг с другом непосредственно в отличие от полифосфорных кислот:
Н>4>Р>2>О>6 >- кислота средней силы, все ее четыре атома водорода могут быть замещены на металл. При нагревании ее водных растворов кислота, присоединяя воду, распадается:
Н>4>Р>2>О>6 >+ Н>2>О = Н>3>РО>3 >+> >Н>3>РО>4 >
Растворы ее солей - гипофосфатов - в воде вполне устойчивы. Из гипофосфатов в воде хорошо растворимы лишь соли щелочных металлов.
Наименьшая положительная степень окисления фосфора в фосфорноватистой (диоксофосфорной) кислоте Н>3>РО>2>. Ее можно получить в свободном состоянии вытеснением из солей - гипофосфитов, например:
Ва(Н>2>РО>2>)>2> + Н>2>SО>4> = ВаSО>4 >+ 2Н>3>РО>2>
Фосфорнофатистая кислота - бесцветные кристаллы, хорошо растворимые в воде. Таким образом, в фосфорноватистой кислоте степень окисления фосфора +1, а его ковалентность равна 5. Н>3>РО>2> - сильная кислота. Эта кислота и ее соли гипофосфиты являются сильнейшими восстановителями.
Существуют и другие кислоты, содержащие фосфор - мононадфосфорная Н>3>РО>5>, динадфосфорную Н>4>Р>2>О>8>, тетраметафосфорная (НРО>3>)>4>, пирофосфорная Н>4>Р>2>О>7>.
Соединения фосфора с неметаллами
Фосфор и водород в виде простых веществ практически не взаимодействуют. Водородные производные фосфора получают косвенным путем, например:
Са>3>Р>2> + 6НСl = 3СаСl>2> + 2РН>3>
Фосфин РН>3> представляет собой бесцветный сильнотоксичный газ с запахом гнилой рыбы. Молекулу фосфина можно рассматривать как молекулу аммиака. Однако угол между связями Н-Р-Н значительно меньше, чем у аммиака. Это означает уменьшение доли участия s-облаков в образовании гибридных связей в случае фосфина. Связи фосфора с водородом менее прочны, чем связи азота с водородом. Донорные свойства у фосфина выражены слабее, чем у аммиака. Малая полярность молекулы фосфина, и слабая активность акцептировать протон приводят к отсутствию водородных связей не только в жидком и твердом состояниях, но и с молекулами воды в растворах, а также к малой стойкости иона фосфония РН>4>+. Самая устойчивая в твердом состоянии соль фосфония - это его иодид РН>4>I. Водой и особенно щелочными растворами соли фосфония энергично разлагаются:
РН>4>I + КОН = РН>3 >+ КI + Н>2>О
Фосфин и соли фосфония являются сильными восстановителями. На воздухе фосфин сгорает до фосфорной кислоты:
РН>3 >+ 2О>2 >= Н>3>РО>4 >
При разложении фосфидов активных металлов кислотами одновременно с фосфином образуется в качестве примеси дифосфин Р>2>Н>4>. Дифосфин - бесцветная летучая жидкость, по структуре молекул аналогична гидразину, но фосфин не проявляет основных свойств. На воздухе самовоспламеняется, при хранении на свету и при нагревании разлагается. В продуктах его распада присутствуют фосфор, фосфин и аморфное вещество желтого цвета. Этот продукт получил название твердого фосфористого водорода, и ему приписывается формула Р>12>Н>6>.
С галогенами фосфор образует три- и пентагалогениды. Эти производные фосфора известны для всех аналогов, но практически важны соединения хлора. РГ>3> и РГ>5> токсичны, получают непосредственно из простых веществ.
РГ>3> - устойчивые экзотермические соединения; РF>3> - бесцветный газ, РСl>3> и РВr>3> - бесцветные жидкости, а РI>3 >- красные кристаллы. В твердом состоянии все тригалогениды образуют кристаллы с молекулярной структурой. РГ>3> и РГ>5 >являются кислотообразующими соединениями:
РI>3 >+ 3Н>2>О = 3НI + Н>3>РО>3>
Известны оба нитрида фосфора, отвечающие трех- и пятиковалентному состояниям: РN и Р>2>N>5>. В обоих соединениях азот трехвалентен. Оба нитрида химически инертны, устойчивы к действию воды, кислот и щелочей.
Расплавленный фосфор хорошо растворяет серу, но химическое взаимодействие наступает при высокой температуре. Из сульфидов фосфора лучше изучены Р>4>S>3>, Р>4>S>7>, Р>4>S>10>. Указанные сульфиды могут быть перекристализованы в расплаве нафталина и выделены в виде желтых кристаллов. При нагревании сульфиды воспламеняются и сгорают с образованием Р>2>О>5> и SО>2>. Водой все они медленно разлагаются с выделением сероводорода и образованием кислородных кислот фосфора.
Соединения фосфора с металлами
С активными металлами фосфор образует солеобразные фосфиды, подчиняющиеся правилам классической валентности. р-Металлы, а также металлы подгруппы цинка дают и нормальные, и анионоизбыточные фосфиды. Большинство из этих соединений проявляют полупроводниковые свойства, т.е. доминирующая связь в них - ковалентная. Отличие азота от фосфора, обусловленное размерным и энергетическим факторами, наиболее характерно проявляется при взаимодействии этих элементов с переходными металлами. Для азота при взаимодействии с последними главным является образование металлоподобных нитридов. Фосфор также образует металлоподобные фосфиды. Многие фосфиды, особенно с преимущественно ковалентной связью, тугоплавки. Так, АlР плавится при 2197 град.С, а фосфид галлия имеет температуру плавления 1577 град.С. Фосфиды щелочных и щелочно-земельных металлов легко разлагаются водой с выделением фосфина. Многие фосфиды являются не только полупроводниками (АlР, GаР, InР), но и ферромагнетиками, например СоР и Fе>3>Р.
Применение фосфора и фосфорсодержащих веществ
Красный фосфор в чистом виде применяют в спичечном производстве; в смеси с толченым стеклом и клеем его наносят на боковые поверхности спичечной коробки. Красный и белый фосфор используют при получении йодистоводородной и бромистоводородной кислот. Фосфид цинка Zn>3>Р>2> применяют для борьбы с грызунами. Белый фосфор используют в военном деле для зажигательных бомб, а также для дымообразующих снарядов, шашек и гранат, дающих дымовые завесы. Применение радиоактивного изотопа фосфора Р32 позволило по-новому осветить поведение фосфора в растениях, почве и удобрениях. Исключительная чувствительность определения радиоактивного фосфора дает возможность следить за ходом поступления в растения фосфатов, за их распределением и превращениями внутри растений. Чистую фосфорную кислоту используют в пищевой и фармацевтической промышленности. Техническая фосфорная кислота идет для окрашивания тканей, производства эмалей, зубных пломб, а также для производства фосфорных удобрений.
Литература:
1.Угай Я. А. Общая и неорганическая химия: Учеб. Для студентов вузов, обучающихся по направлению и спец. "Химия". - М.: Высш. шк., 1997 г. 2. Ходаков Ю. В. Неорганическая химия. Изд. 4-е, переработ. М., "Просвещение",1972г. 3. Неорганическая химия под редакцией И. Н. Заозерского. М.: Высш. шк. 1963 г.
> >> >
> >
> >
> >