Корреляционно-регрессионный анализ зависимости прибыли 40 банков от их чистых активов

Задание №1.

Произвести выборку 40 банков, пользуясь таблицей случайных чисел. Затем по отобранным единицам выписать значения факторного и результативного признаков.

Задание №2.

Построить ряд распределения по факторному признаку. Число групп определить по формуле Стерджесса. По построенному ряду распределения рассчитать среднее арифметическое, моду, медиану, показатели вариации. Сформулировать выводы.

Выводы: Вариация факторного признака (чистых активов) для данной совокупности банков является значительной, индивидуальные значения отличаются в среднем от средней на 11 127 232 тыс. руб., или на 106,08%. Среднее квадратическое отклонение превышает среднее линейное отклонение в соответствии со свойствами мажорантности средних. Значение коэффициента вариации (106,08%) свидетельствует о том, что совокупность достаточно неоднородна.

Задание №3

Осуществить проверку первичной информации по факторному признаку на однородность. Исключить резко выделяющиеся банки из массы первичной информации.

Проверка первичной информации по факторному признаку на однородность осуществлялась в несколько этапов по правилу 3 сигм. В результате была получена достаточно однородная совокупность (все единицы лежат в интервале (X>ср.> - 3 ; X>ср.> +3), а коэффициент вариации меньше требуемых 33%), которая представлена ниже.

Задание №4

Предполагая, что данные банкам представляют собой 10% простую случайную выборку с вероятностью 0,954 определить доверительный интервал, в котором будет находиться средняя величина факторного признака для генеральной совокупности.

X>ср.>– >Xген.>>ср.> ≤ X>ген.>>ср.> ≤ X>ср.> + >Xген.>>ср.>

Где X>ср.> – средняя выборочной совокупности, X>ген.>>ср.> – средняя генеральной совокупности, >Xген.>>ср.> – предельная ошибка средней.

>Xген.>>ср.> = t * μ>ген.>>ср.>

Где t – коэффициент кратности средней ошибки выборки, зависящий от вероятности, с которой гарантируется величина предельной ошибки, μ>ген.>>ср.> – величина средней квадратической стандартной ошибки.

Находим t по таблице для удвоенной нормированной функции Лапласа при вероятности 0,954, t = 2.

μ>ген.>>ср.> = ((2*(1- n/N))/n)

Где 2 – дисперсия, n – объем выборочной совокупности, N – объем генеральной совокупности.

N=n/0,1 n=25 N=250 2= 200 301 737 920 X>ср.> = 1 506 994 (я взял дисперсию и среднюю, рассчитанные по однородной совокупности по не сгруппированным данным)

μ>ген.>>ср.>= 84 917 >Xген.>>ср.> = 169 834

X>ср.>– >Xген.>>ср>>.>= 1 337 161 X>ср.> + >Xген.>>ср>>.>= 1 676 828

1 337 161 ≤ X>ген.>>ср.> ≤1 676 828 - искомый доверительный интервал

 В исследовании все размерные величины измеряются тысячами рублей. По причине нехватки места размерность после каждой величины не приводиться.

Задание №5

Проанализировать зависимость результативного признака от факторного признака.

Пункт №1

Установить факт наличия корреляционной зависимости с помощью групповой таблицы и ее направление, дать графическое отображение связи.

Как видно из данных групповой таблицы, с увеличением величины чистых активов банков уменьшается величина прибыли банков. Эмпирическая линия связи приближается, в общем, к прямой линии. Следовательно, можно предполагать наличие обратной линейной связи.

Пункт №2

Проверить правило сложения дисперсий и сформулировать вывод о степени влияния факторного признака на величину результативного признака.

Нижеследующие показатели были рассчитаны на основе данных групповой таблицы и вспомогательной таблицы (см. приложение 2).

Правило сложения дисперсий проверено: общая дисперсия и сумма межгрупповой и средней внутригрупповой дисперсий совпадают. Из полученных данных можно сделать вывод, что на 29% вариация прибыли банков обусловлена различиями в величине их активов, а на 71% - влиянием прочих факторов. Таким образом, факторный признак (чистые активы банков) имеет среднее влияние на результативный признак (прибыль/убыток).

Пункт №3

Измерить степень тесноты связи с помощью корреляционных отношений, проверить возможность использования линейной функции в качестве формы уравнения связи.

В
се нижеследующие показатели рассчитаны с помощью ранее найденных данных и данных вспомогательной таблицы (см. приложение 2).

Значение линейного коэффициента корреляции (r = -0,38) свидетельствует об отсутствии тесной связи. Средняя квадратическая ошибка коэффициента корреляции >r> =0,174, а  r />r> =2,18, так как  r />r> > t>табл.> (2,18>2,07), то коэффициент корреляции можно считать существенным.

Корреляционное отношение (=0,54) показывает незначительную тесноту связи. Значимость рассчитанного корреляционного отношения оценивается с помощью дисперсионного отношения, равного 1,568. Так как 1,568<2,74 (F-критерий = 2,74), то оценивать тесноту связи с помощью корреляционного отношения нельзя из-за его несущественности.

Рассчитанные здесь же коэффициент Фехнера (К>= -0,28) и коэффициент корреляции рангов Спирмэна (= -0,048) свидетельствуют о наличие слабой связи. Данные для расчета этих коэффициентов приведены во вспомогательной таблице (см. приложение 2).

Для проверки возможности использования линейной функции определяется величина 2 =0,986, она меньше табличного значения F-критерия (F>табл.>=2,9), поэтому гипотеза о возможности использования в качестве уравнения регрессии линейной функции не опровергается.

Итак, можно утверждать, что между факторным и результативным признаком существует слабая связь. На этом этапе можно было бы остановить исследование, так как очевидно, что был выбран факторный признак, не оказывающий существенного влияния на результативный. И построенная по нему модель связи вряд ли будет качественной и достоверной, и вряд ли будет иметь практическую пользу в экономическом смысле. Но я все же доведу исследование до конца.

Пункт №4

Рассчитать параметры уравнения регрессии, оценить его качество и достоверность, используя среднюю квадратическую ошибку. Дать оценку результатов исследования взаимосвязи в целом.

Определяется модель связи. График эмпирической функции регрессии и величина 2 показывают наличие линейной связи, поэтому используется функция ŷ = a + bx.

b= (xy – nx y)/(x2 - n(x)2)= -0,05

a= y - bx = 93 099,35

ŷ = 93 099,35 – 0,05x - модель связи.

Все данные для расчетов содержатся во вспомогательной таблице (см. приложение 2).

Средняя квадратическая ошибка уравнения:

S>l> = ((y-ŷ)2/(n-l)) = 58 723, где ŷ – значения результативного признака, рассчитанные по уравнению связи, l – количество параметров уравнения регрессии.

(S>l> / y)100 = (58723/14933)100=393%

Полученное отношение значительно больше 15%, поэтому уравнение достаточно плохо отображает взаимосвязь двух признаков и не может быть использовано в практической работе.

По результатам исследования можно сделать вывод о том, что, хотя теоретически между чистыми активами банков и их прибылями должна существовать прямая тесная связь, на практике же мы показали наличие довольно слабого влияния факторного признака на результативный. Это не совпадение может объясняться рядом причин: во-первых, ошибочными теоретическими предположениями, во-вторых, некачественной, нерепрезентативной выборкой, и, наконец, в-третьих, ошибками, допущенными в исследовании, которых, может быть, не удалось избежать.