Система управления электроприводом БТУ 3601

Введение

Основная цель данного курсового проекта это разработка тиристорного электропривода на базе комплектного электропривода БТУ 3601, в процессе выполнения будет необходимо: рассчитать и выбрать элементы силовой части электропривода, построить статические характеристики разомкнутого электропривода, синтезировать и рассчитать параметры регуляторов и смоделировать переходных процессов скорости и тока электропривода с помощью программного пакета MATLAB 6.5. Это позволит приобрести навыки самостоятельного принятия инженерных решений на базе современной полупроводниковой техники при расчете и проектирование систем автоматического управления.

  1. Система электропривода и его функциональная схема

По заданию на курсовой проект был выбрана система электропривода по схеме «тиристорный преобразователь – двигатель» которая, реализована комплектным тиристорным электроприводом БТУ-3601

  1. Расчет и выбор элементов силовой части электропривода

    1. Выбор силового трансформатора тиристорного преобразователя

Приведем сопротивление обмоток двигателя к нагретому состоянию учтя, что максимальная рабочая температура для изоляции класс B = 90 C:

Сопротивление обмотки возбуждения:

Сопротивление якорной цепи:

>Рассчитаем номинальную скорость двигателя:>

Трансформатор в управляемом вентильном электроприводе необходим для согласования напряжения сети с напряжением двигателя [1].

Фазное напряжение вторичной обмотки трансформатора определяется выражением:

где – коэффициент запаса по напряжению сети, – коэффициент запаса по напряжению, учитывающий неполное открытие вентилей при максимальном управляющем сигнале, – коэффициент запаса по напряжению, учитывающий падение напряжения в вентиле, в обмотках трансформатора, – коэффициент пропорциональности между средневыпрямленным напряжением и действующим значением фазного напряжения вторичной обмотки для трехфазной мостовой схемы выпрямления, – номинальное напряжение двигателя

Коэффициент трансформации трансформатора:

Так, как коэффициент трансформации равен единице воспользуемся бестрансформаторным варианте схемы, где силовые цепи преобразователя тиристорного электропривода подключаются к сети через анодный реактор. Анодный реактор выбирают по действующему значению номинального тока фазы преобразователя , где коэффициент b схемы выпрямления (b=0,817 для мостовой схемы), и номинальному напряжению сети.

Номинальный ток двигателя равен:

электропривод силовой регулятор matlab

где – номинальная мощность двигателя, – номинальное напряжение обмотки возбуждения, – номинальный КПД двигателя, – сопротивление обмотки возбуждения в нагретом состоянии.

Ток фазы первичной обмотки трансформатора:

Ток фазы вторичной обмотки трансформатора:

Выбираем анодный реактор типа РС 40/1,4 [2]. Его параметры, взятые из справочных данных:

>.>

    1. Проверка и выбор тиристоров

Выбор и проверка тиристоров, принятых к установке в преобразователе, производятся, по трем параметрам: по среднему току, максимальному амплитудному значении напряжения на тиристоре и ударному току внутреннего короткого замыкания [2].

Среднее значение тока, протекающего через тиристор:

где: – допустимый ток двигателя, для общепромышленной серии машин – = , для серии двигателей 2ПФ; – для трехфазной мостовой схемы.

Значение тока, приведенное к классификационным параметрам тиристоров:

где – коэффициент запаса по току, – коэффициент, зависящий от схемы выпрямления, угла проводимости и от формы тока, – коэффициент, учитывающий условия охлаждения.

Найденный ток должен быть меньше действующего значения прямого тока:

Максимальное амплитудное напряжение на тиристоре:

где – коэффициент запаса по напряжению, учитывающий возможность перенапряжений на тиристорах; – линейное действующее значение напряжения вторичной обмотки трансформатора, . должно быть меньше повторяющегося напряжения тиристора.

Для нахождения ударного тока внутреннего короткого замыкания (КЗ на стороне постоянного тока, якорная цепь двигателя и реактора вне цепи) определяется амплитуда базового тока:

где - амплитуда фазного напряжения вторичной обмотки трансформатора.

Ударный ток внутреннего короткого замыкания находится по формуле:

где , определяется по кривым [3, рис. 1.128, с. 106] в зависимости от в зависимости от при .

Тиристор будет удовлетворять требованиям, если ток внутреннего короткого замыкания в преобразователе будет меньше ударного тока тиристора, то есть:

По выше найденным соотношениям выбираем тип тиристора [2], типа Т171–200 с техническими данными представленными в табл. 1.

Таблица 1

Тип

U>пор>, В

U>max>, В

I>max>> >>cp>, A

I>y>>, kA

I2t>тир>, A2c

(du/dt), мкс

Т171–200

1,15

500…1200

200

5,2

135000

160

    1. Выбор катодного дросселя

Так, как пульсации выпрямленного тока существенно ухудшают режим коммутации в двигателе и увеличивают его нагрев, для их сглаживания в схему добавляют катодный дроссель. Для этого необходимо найти амплитудные значения выпрямленного напряжения основной гармоники:

где – средневыпрямленное напряжение при угле регулирования, равном нулю; р = 6 – для трехфазной мостовой; k = 1 – кратность гармоники, т.е. отношение порядкового номера гармоники к числу пульсации. В симметричной мостовой и нулевых схемах наибольшую амплитуду имеет основная гармоника k = 1. Гармоники более высокой кратности имеют малую амплитуду, и действие дросселя на них эффективнее, поэтому расчет индуктивности дросселя ведется только по первой гармонике.

По известной амплитуде переменной составляющей и допустимому действующему значению основной гармоники тока н>1> (1)% необходимая величина индуктивности цепи выпрямленного тока рассчитывается по формуле:

где – для машин без компенсационной обмотки; – номинальный ток двигателя.

Индуктивность сглаживающего ректора:

где – индуктивность анодного реактора,

Так, как по расчету получилась отрицательная величина , то это свидетельствует о том, что при принятом уровне пульсации тока катодный дроссель не нужен. Тогда действительный уровень пульсации тока первой гармоники с учетом приведенной индуктивности трансформатора или анодного реактора можно определить по формуле:

Значение гранично-непрерывного тока якоря двигателя в этом случае можно найти, используя соотношение:

где – граничное значение коэффициента:

Рассчитаем максимальный угол регулирования :

где – конструктивная постоянная на номинальный поток:

Рассчитаем скорость двигателя при максимальном угле управления:

При угле регулирования значение гранично-непрерывного тока больше, чем , значит влиянием прерывистого режима тока электроприводе нельзя пренебречь.

  1. Расчет параметров силовой цепи электропривода

Эквивалентное сопротивление якорной цепи двигатель – преобразователь:

Эквивалентная индуктивность якорной цепи двигатель – преобразователь:

d – Коэффициент из табл. 1 [2].

Напряжение преобразователя при работе электропривода в номинальном режиме

Угол регулирования, соответствующий номинальному режиму работы:

Минимальный угол регулирования должен превышать для надежного включения вентиля, значит запас напряжения доступный преобразователю равен отношению:

Электромагнитная постоянная времени якорной цепи двигатель – преобразователь:

Электромеханическая постоянная времени электропривода:

где:–приведенное значение момента инерция привода;

  1. Построение статических характеристик разомкнутого электропривода

    1. Естественные характеристики двигателя

Найдем номинальное значение момента двигателя:

Естественная механическая характеристика двигателя постоянного тока описывается выражением [3]:

Естественную характеристику построим по двум точкам:

1. Точка идеального холостого хода при :

2. Точка работы при номинальной частоте вращения .

    1. Основные характеристики электропривода

Основная механическая характеристика электропривода описывается уравнением:

Основную характеристику построим по двум точкам:

1. Точка идеального холостого хода при :

2. Точка работы при номинальной частоте вращения .

    1. Характеристики, обеспечивающие минимальную скорость работы электропривода

Минимальную скорость работы электропривода будет обеспечивать

напряжение преобразователя равное:

1. Точка идеального холостого хода при :

2. Точка работы при минимальной частоте вращения .

    1. Характеристики аварийного динамического торможения

Механическая характеристика динамического торможения описывается выражением:

где – добавочное сопротивление якоря двигателя при динамическом торможении.

Все полученные характеристики построены на рис. 2 и рис. 3.

Рис. 2

Рис. 3

  1. Синтез и расчет параметров регуляторов в линеализованных системах управления частотой вращения электропривода

    1. Структурная схема автоматизированного электропривода

При проектировании электропривода двухконтурной схемой с контурами регулирования скорости и тока, линеаризованная структурная схема двухконтурного автоматизированного электропривода регулирования частоты вращения представлена на рис. 4.

Рис. 4

Где передаточные функции звеньев двигателя: W>1>(р), W>2>(р), W>3>(р); преобразователя W>П>(p) и передаточные функции фильтров W>ОС>(p), W>ОТ>(p), положительная обратная связь с передаточной функцией W>4>(р) служит для компенсация внутренней обратной связи по ЭДС двигателя, передаточные функции регуляторов W>РС>(p), W>РТ>(p) и их параметры будут определен в процессе синтеза методом подчиненного регулирования.

Тиристорный преобразователь является звеном, передаточная функция которого:

где – коэффициент усиления управляемого вентильного преобразователя, который определяется выбранной точкой линеаризации; Т>n> = 0,009 с – постоянная времени системы управления преобразователем.

Коэффициент обратной связи по току:

где – напряжение насыщения выхода регулятора скорости.

Расчетное значение коэффициента обратной связи по скорости определяется выражением:

где – максимальное значение напряжения задания.

Синтез начинаем с внутреннего контура – контура тока.

    1. Синтез контура регулирования тока (КРТ) якоря двигателя

Структурная схема контура тока представлена на рис. 5, на которой: k>Т> – коэффициент обратной связи по току; W>РТ>(р) – передаточная функция регулятора тока, которая подлежит определению.

Рис. 5

При синтезе прими следующие допущения:

  • Пренебрежем влиянием ЭДС вращения в контуре тока якоря.

  • Не учитывается влияние внутренней обратной связи по ЭДС двигателя

Настройку регулятора тока будем осуществлять на технический оптимум, следовательно, разомкнутый контур тока должен имеет передаточную функцию:

Следовательно, передаточная функция регулятора тока по схеме рис 4 определится из условия:

и при получим передаточную функцию регулятора тока:

где - коэффициент передачи пропорциональной части регулятора тока, – постоянная времени интегральной части регулятора тока.

    1. Синтез контура регулирования скорости (КРС) электропривода

Контур скорости будем настраивать на симметричный оптимум для обеспечения астатизма САУ.

Контур скорости является внешним по отношению к контуру тока. Структурная схема контура скорости электропривода при тех же допущениях показана на риc. 6.

Рис. 6

Примем некомпенсируемую постоянную времени в контуре скорости:

При настройке на симметричный оптимум, разомкнутый контур скорости должен имеет передаточную функцию:

Следовательно, передаточная функция регулятора скорости определится из условия:

Следовательно, передаточная функция регулятора скорости при настройке контура скорости на симметричный оптимум:

где – коэффициент передачи пропорциональной части регулятора скорости при настройке контура скорости на симметричный оптимум, – постоянная времени интегральной части регулятора скорости при настройке контура скорости на симметричный оптимум

При настройке на симметричный оптимум для уменьшения перерегулирования на вход системы необходимо установить фильтр с передаточной функцией:

Частота пропускания системы подчиненного регулирования скорости электропривода при настройке его на симметричный оптимум и наличии фильтра на входе равна

  1. Моделирование переходных процессов скорости и тока электропривода на ЭВМ с помощью пакета MATLAB

Для проверки расчетов регуляторов делаем моделирование системы электропривода в прикладном пакете программ MATLAB6.5.

Структурная схема электропривода представлена на рис. 7.

Рис. 7

Переходные процессы по скорости и току при пуске вхолостую, разгоне до минимальной скорости, с последующим разгоном до номинальной скорости, далее торможением до минимальной скорости и остановкой на рис. 8.

Рис. 8

Переходные процессы по скорости и току при пуске вхолостую с последующим реверсом и остановкой на рис. 9.

Рис. 9

Переходные процессы по скорости и току при разгоне до номинальной скорости с последующими набросом и сбросом нагрузки на рис. 10.

Рис. 10

  1. Расчет параметров регуляторов тока, скорости, и выбор их элементов

Расчёт параметров регуляторов тока, скорости в системе подчиненного регулирования выполняется по расчетной схеме рис. 11 и передаточным функциям регуляторов. В расчётной схеме рис. 6.1 приняты следующие обозначения: ВА – датчик тока, (U>ВА>=k>ВА>I); BR – датчик скорости вращения (U>BR>=k>BR>щ); УП – управляемый преобразователь совместно с системой управления им; k>ВА>, k>BR> – коэффициенты передачи датчиков тока и скорости; R’>зс> – сопротивление в обратной связи усилителя при реализации на нем П-регулятора скорости.

Рис. 11

Принимая величину сопротивления , и k>ba> =1 [2], находим остальные величины:

Сопротивление по не инвертирующему входу усилителя выбирается из условия равенства нулю напряжения смещения на выходе от входных токов усилителя [2]:

По расчетным значениям выбираем типовые резисторы и конденсаторы [4]. Выбираем резистор С5–42В соответственно ряду Е96 на 4.99 кОм, 787 Ом, 69,8 кОм и 681 Ом. Выбираем конденсатор типа К73–1б емкостью 0.15 мкФ [5].

Полностью аналогично для регулятора скорости:

Принимая величину сопротивления , и k>br> =1 [2], находим остальные величины:

Сопротивление по неинвертирующему входу усилителя выбирается из условия равенства нулю напряжения смещения на выходе от входных токов усилителя [2]:

По расчетным значениям выбираем типовые резисторы и конденсаторы [4]. Выбираем резистор С5–42В соответственно ряду Е96 на 4.99 кОм, 16,9 кОм, 78,7 кОм и 370 Ом. Выбираем конденсатор типа К73–1б емкостью 3,9 мкФ [5].

  1. Описание датчика проводимости вентилей БТУ-3601

Поскольку в мостовой схеме выпрямления для протекания тока в проводящем состоянии должны находиться минимум два тиристора из разных групп (один из анодный и другой из катодный), достаточно контролировать проводящее состояние тиристоров какой либо группы. В преобразователе осуществляется контроль состояния тиристоров катодной группы комплекта «Н» (соответственно – анодной группы комплекта «В»). Принципиальная схема ДПВ приведена на рис. 12.

Рис. 12

В непроводящем состоянии на переходах анод – катод тиристоров существует переменное напряжение, равное фазному напряжению вторичной обмотки силового трансформатора. Параллельно тиристорам подключены RC-цепочки, выполняющие функцию защиты тиристоров от перенапряжений. Величина сопротивления RC-цепочки при указанных на схеме номиналах R и С составляет около 13 кОм на частоте сети, т.е. оказывается вполне достаточной, чтобы обеспечить входной ток оптрону. Напряжение каждой RC-цепочки через согласующие резисторы подается на диодные мосты V4, V5, V6, нагруженные на светодиоды оптронов V7, V8, V9. непроводящее состояние тиристоров соответствует засвеченному состоянию фотодиодов в оптронах, имеющих в этом случае малую величину сопротивления, достаточную для того, чтобы транзисторы V10, V11 находились в закрытом состоянии, т.е. ДПВ вырабатывает логический сигнал единичного уровня U>б.а.>=1.

Если какой-либо из тиристоров находится в проводящем состоянии, падение напряжения на соответствующей RC-цепочке равно нулю, поэтому через светодиод одного из оптронов не будет проходить ток. Фотодиод этого оптрона будет иметь большую величину сопротивления, приводящую к открытию транзисторов V10 и V11. Таким образом, во время проводящего состояния какого-либо из тиристоров ДПВ формирует логический сигнал нулевого уровня U>б.в.>=0.

В зависимости от номинального выпрямленного напряжения преобразователя (напряжения вторичной обмотки силового трансформатора) на сопротивлениях, согласующих силовое напряжение на тиристорах с входным токов оптронов, устанавливаются следующие перемычки: для номинального выпрямленного напряжения 115 В 3–9, 4–10, 5–11; для номинального выпрямленного напряжения 230 В 3–6, 4–7, 5–8.

Практически ДПВ имеет зону нечувствительности, проявляющуюся в виде провалов в сигнале U>б.в.> в моменты перехода через нуль напряжений на RC-цепочках. Поэтому в случае, если ни один тиристор моста не проводит, в сигнале U>б.в> все равно имеются короткие импульсы нулевого уровня [1].

Заключение

В процесс выполнения курсового проекта был разработан тиристорный электропривод на базе комплектного электропривода подачи БТУ-3601. Были рассчитаны и выбраны по справочной литературе силовые элементы привода. Осуществлен синтез регуляторов на основе метода подчиненного регулирования и выполнено проверочное моделирование. Проверка показала, что система отвечает заданным требованиям по диапазону регулирования и относительной погрешности регулирования на малой скорости. В заключении был описан процесс работы датчика проводимости вентилей.

Литература

1) Чернов Е.А., Кузьмин В, П., Синичкин С Г. Электроприводы подач станков с ЧПУ: Справочное пособие. – Горький: Волго-Вятское книжн. изд-во, 1986. – 234 с.

2) Симаков Г.М., Гринкевич Д.Я. Системы управления электроприводами: метод пособие. – Новосибирск: Изд-во НГТУ, 2001. – 78 с

3) Справочник по проектированию автоматизированного электропривода и систем управления технологическими процессами / Под ред. В.И. Круповича, Ю.Г. Барыбина, М.Л. Самовера. – 3-е изд., перераб. и доп. – М.: Энергоиздат, 1982 – 416 с.

4) Резисторы: Справочник / Ю.Н. Андреев. А.И, Антонян, Д.М. Иванов и др.; Под ред. И.И. Четверткова. – М.: Энергоиздат, 1981. –352 с.

5) Справочник по электрическим конденсаторам / М.Н. Дьяков, В.И. Каратанов, В.И. Присняков и др.; Под ред. И.И. Четверткова и В.Ф, Смирнова. – М.: Радио и связь, 1983. – 576 с.