Расчет и выбор посадок для различных соединений

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Приборостроение, метрология и сертификация»

КУРСОВАЯ РАБОТА

по дисциплине «Метрология, стандартизация и сертификация»

Выполнил: студент Филимонов С. В.

группа 22-Т(у)

Специальность: 120100 «Технология машиностроения»

Руководитель:

к.т.н., доцент Лисовская З.П.

Орел, 2005

Содержание

Введение

1. Анализ устройства и принципа действия сборочной единицы

2. Расчет и выбор посадок подшипников качения

3. Выбор посадок для типовых гладких цилиндрических соединений

4. Расчет размеров и выбор конструкций гладких предельных калибров

5. Выбор посадки шлицевого соединения

6. Определение точностных характеристик резьбового соединения

7. Определение точностных характеристик зубчатого зацепления

8. Расчет размерной цепи

Список использованных источников

Введение

Состояние высокоразвитых государств обусловлено в основном уровнем их научно-технического прогресса, важнейшей целью которого является выпуск высококачественной продукции в необходимом количестве, с наименьшими затратами и в кратчайшие сроки. Первоочередной задачей для разрешения стала проблема повышения качества и конкурентоспособности различных изделий и услуг. Метрология, стандартизация и сертификация являются инструментами обеспечения качества продукции, работ и услуг. По стандартам изготавливают огромное количество изделий на специализированных предприятиях, что снижает их стоимость и увеличивает качество изготовления. Стандарты на процессы, услуги, документы содержат те правила и нормы, которые должны знать и выполнять и специалисты промышленности, и специалисты торговли.

Для обеспечения конкурентоспособности поставщик должен подкрепить выпуск товара сертификатом на систему качества. При этом наибольшее доверие у потребителей вызывает сертификат на систему качества. Для надежного функционирования системы качества персонал предприятия, а в частности отдел технического контроля, должен знать и грамотно применять правила метрологии, стандартизации и сертификации. Соблюдение правил метрологии на различных этапах изготовления продукции позволяет свести к минимуму потери от недостоверных результатов измерений. Известно, что основной задачей конструктора является создание новых и модернизация существующих машин и приборов, изготовление чертежей и др. технической документации, обеспечивая её высокий технический уровень, качество, технологичность и экономичность изделия. Решение этой задачи в значительной степени связано с правильным нормированием точности изготовления изделий. Сюда относится правильный выбор размеров, назначение допусков размеров, формы и расположения поверхностей, нормирование шероховатости, зазоров и натягов.

Целью курсовой работы является расчет и выбор посадок для различных соединений, исходя из назначения соединения, назначения сборочной единицы и условий работы.

1. Анализ устройства и принципа действия сборочной единицы

Заданная сборочная единица предназначена для передачи крутящего момента. Крутящий момент с зубчатых колес 7 и 12 передается при помощи шлицевого соединения на вал 4.

Вал 4 опирается на втулки 2 и 9, которые в свою очередь по наружным диаметрам находятся в корпусе 1 и крышке 8 и имеет тепловой зазор для компенсации теплового удлинения вала 1. Для предотвращения сближения втулки 2, между ней и зубчатым колесом 7 устанавливают распорную втулку. С целью уменьшения трения, свободную полость внутри корпуса заполняют смазывающим веществом. Благодаря шпоночному соединению вала 4 и муфты 5 крутящий момент передается на другие детали и узлы механизма.

Зубчатое колесо 7 должно сопрягаться с валом 4 по переходной посадке с целью облегчения легкости монтажа и возможного демонтажа во время ремонта и одновременно для обеспечения хорошей центрации зубчатого колеса 7 и вала 4. Для сохранения посадки контактирующие поверхности вала 4 и колеса 7 подвергаются шлифованию.

Зубчатое колесо 12 должно сопрягаться зубчатым колесом 7 по посадке с натягом с целью от передачи крутящего момента и предотвращения его проворачивания.

Втулки 2 и 9 сопрягаются с валом 4 по посадке с зазором В корпусе 1 и крышке 8 втулки размещаются по посадке c натягом с целью предотвращения проворачивания и износа корпуса и. Поверхности, сопрягаемые с втулками необходимо подвергнуть шлифованию с целью уменьшения гребешков микронеровностей, которые при работе могут сминаться и повлечь увеличение зазора, что недопустимо для правильной работы механизма. К поверхностям вала 4, корпуса 1 и крышки 8 в местах сопряженных с подшипником предъявляются высокие требования к соосности, круглости и профиля продольного сечения.

Болты 14 М12х1,25 предназначены для притяжки крышек к корпусу. Мелкая резьба у них выполнена для избежания самопроизвольного раскручивания и для более сильной притяжки.

В сборке отдельные детали связаны друг с другом, поэтому отклонение размеров формы и расположения осей или поверхностей одной какой-либо из деталей вызывает отклонения размеров или формы в сборочной единице. Суммируясь, они оказывают влияние на качественные характеристики.

2. Выбор посадок для типовых гладких цилиндрических соединений

Определяются точностные характеристики сопрягаемых деталей и сопряжений.

Исходя из назначения и условий работы цилиндрических соединений выбираются посадки:

Посадка с зазором.

D1 = 50мм

ES = + 0,03 es = –0,025

EI = 0 ei = –0,064

TD = 0,03 Td = 0,039

Smin = EI – es =0–(–0,025)= 0,025 мм.

Smax = ES – ei = 0,03–(– 0,064)= 0,094 мм.

TS = Smax - Smin = 0,094 – 0,025 = 0,069 мм.

Посадка с натягом

D3 = 60 мм

ES = +0,03 es = +0,060

EI = 0 ei = +0,041

TD = 0,03 Td = 0,019

Nmin = ei– ES= 0,041– 0,02= 0,021мм.

Nmax = es– EI = 0,060 – 0 = 0,060 мм.

TN = Nmax– Nmin =0,060 – 0,021 = 0,039 мм.

Результаты вычислений выносятся в таблицу:

Таблица 2.1

Обозначение

соединения

Вид посадки

Точностные характеристики, мм

Smax

Smin

TS

50

С зазором

0,094

0,025

0,069

Обозначение

соединения

Вид посадки

Точностные характеристики, мм

Nmin

Nmax

TN

60

С натягом

0,021

0,060

0,039

Рисунок 2.1 - Схема расположения полей допусков посадки с зазором

D1=50мм

Рисунок 2.2 - Схема расположения полей допусков переходной посадки

D3 = 60 мм

3. Расчет размеров и выбор конструкций гладких предельных калибров

Находятся размеры контролируемых деталей с учетом известных полей допусков и предельных отклонений.

Для калибра-пробки:

60Н7мм

Dmax => НЕ Dmax= 60,03 мм

Dmin => ПР Dmin=60 мм

Для калибра-скобы:

60r6мм

dmax => НЕ dmax= 60,060 мм

dmin => ПР dmin= 60,041 мм

3.2. Рассчитываются исполнительные размеры калибров.

Для калибра-пробки:

z=4мкм; H=5 мкм; y =3 мкм [1], таблица.Д.1

ПРнов.min = Dmin + z – H/2 = 60+0,004-0,0025= 60,0015 мм

ПРнов.max = Dmin + z + H/2 = 60+0,004+0,0025= 60,0065 мм

ПРизн = Dmin – y = 60 – 0,003 = 59.997 мм

ПРисп = ПРнов.max –Н = 60,0065-0,005 мм

НЕmin = Dmax–H/2 = 60,003-0,0025=60,0005 мм

НЕmax =Dmax+H/2 = 60,003+0,0025=60,0055 мм

НЕисп = НЕmax –H = 60,0055 -0,005 мм

Для калибра-скобы: z1=0,004 H1/2 =0,0025 Н1=0,005 y1 =0,003

z1 = 4 мкм; H1 = 5 мкм; y1 = 3 мкм [1], табл.Д.1

ПРнов.min = dmax – z1 - H1/2 = 60,060 –0,004 – 0,0015= 60,0545 мм

ПРнов.max = dmax – z1 + H1/2 = 60,060 – 0,004 + 0,0015= 60,0575 мм

ПРизн = dmax+ y1 = 60,060 + 0,003 = 60,063 мм

ПРисп = ПРнов.max +H1=60,0575 +0,005 мм

НЕmin = dmin - H1/2 = 60,041 –0,0025 = 60,0385 мм

НЕmax = dmin + H1/2 = 60,041 +0,0025 = 60,0435 мм

НЕисп = НЕmin+H1 = 60,0385 +0,005 мм

подшипник соединение посадка

Рисунок 3.1 - Схема расположения полей допусков калибра-пробки 60Н7мм

Рисунок 3.2 - Схема расположения полей допусков калибра-скобы 60r6мм

4. Расчет и выбор посадок подшипников качения

Определяются номинальные размеры конструктивных элементов заданного подшипника и вид нагружения колец подшипника.

Исходные данные:

Диаметр внутреннего кольца d = 40 мм

Диаметр наружного кольца D = 90 мм

Ширина кольца B = 23 мм

Ширина фаски кольца r = 2,5 мм

Радиальная реакция опоры R = 4,5 кН

Перегрузка 180%

Вид нагружения колец подшипника:

внутреннее кольцо – циркуляционные нагружения [1], таблица Е.1

внешнее кольцо – местные нагружения [1], таблица Е.1

Выбираются поля допусков колец подшипника.

Определяются предельные отклонения колец подшипников.

Подшипник 0 класса точности.

Диаметра отверстия внутреннего кольца: 40L0(-0,012) мм [3] страница 806 таблица 4.72

Диаметра наружного кольца: 90l0(-0,015) мм [3] страница 808 таблица. 4.73

Выбор поля допуска вала, сопряженного с подшипником

Рассчитывается значение интенсивности радиальной нагрузки Pr:

Pr===450 Кн/м

где R – радиальная реакция опоры на подшипник; R=4,5 Кн

b – рабочая ширина посадочного места, м; b=B-2r=0,023-20,0025=0,018

r – ширина фаски кольца подшипника; 0,0021 м

k1 – динамический коэффициент посадки; k1=1,8, так как перегрузка более 150%

k2 – коэффициент, учитывающий степень ослабления посадочного натяга; k2=1

k3 – коэффициент неравномерности распределения радиальной нагрузки Pr; k3=1

По найденному значению Pr находится поле допуска вала – k6 [1], таблица Е.4

es = +0,018 dmax = 40,018

ei = +0,002 dmin = 40,002

Td = 0,016

Выбор поля допуска отверстия корпуса под подшипник.

В зависимости от нагрузки кольца выбирается поле допуска – H7 [1], таблица E.2

ES = +0,034

Dmax = 90,034

EI = 0

Dmin = 90

TD = 0,034

Определяются точностные характеристики сопряжений.

Вал – внутреннее кольцо подшипника

Nmax = 0,018+0,012=0,030мм

Nmin = 0,002+0=0,002 мм

TN = Nmax– Nmin= 0,040– 0,002=0,038 мм

Во избежание разрыва кольца максимальный натяг посадки Nmax не должен превышать значения натяга, допускаемого прочностью кольца подшипника Nдоп. Поэтому проверяется условие: Nmax Nдоп

Nдоп===0,049 мм

где [] – допустимое напряжение на растяжение; []=70 Н/м2

k – коэффициент, принимаемый для подшипников средней серии равным 2,3

Nmax Nдоп; 0,0300,049 – условие выполняется

Отверстие корпуса – наружное кольцо подшипника

Smin = 0–0 = 0мм

Smax= 0,034– (– 0,015)= 0,049 мм

ТS = Smin +Smax = 0+0,049=0,049 мм

Полученные данные вносятся в таблицы:

Таблица 4.1 Точностные характеристики

соединения вал – внутреннее кольцо

Обозначение

соединения

Вид посадки

Точностные характеристики, мм

Nmin

Nmax

TN

40

С натягом

0,002

0,030

0,016

0,028

Таблица 4.2 Точностные характеристики соединения отверстие в корпусе – наружное кольцо

Обозначение

соединения

Вид посадки

Точностные характеристики, мм

Smin

Smax

TS

90

Без гарантирова-нного зазора

0

0,049

0,0245

0,049

Рисунок 4.1- Схема поля допуска соединения вал – внутреннее кольцо40

Рисунок 4.2- Схема поля допуска соединения корпус – наружное кольцо 90

5. Выбор посадки шлицевого соединения

b = 8 мм

Z = 8

D = 60 мм

d = 52 мм

Устанавливается способ центрирования шлицевого соединения – по внешнему диаметру D.

Выбираются посадки в зависимости от способа центрирования:

d=52мм; [3], страница 782 таблица 4.58.

D=60мм; b=10мм [1], таблица Ж1-Ж4

Определяются точностные характеристики элементов шлицевого соединения и заносятся в таблицу:

Таблица 5 - Точностные характеристики элементов шлицевого соединения

Наименование параметра

Номинальный размер, мм

Поле допуска

Значение допуска, мм

Предельные отклонения, мм

Предельные размеры, мм

EI, ei

ES, es

min

max

Точностные характеристики параметров шлицевого профиля вала

ширина зуба

10

f8

0,022

-0.035

-0.013

9,965

9,987

наружный диаметр

60

Js6

0.019

-0,0095

+0,0095

59,9905

60,0095

внутренний диаметр

52

3,3

-3,3

0

52

48,7

Точностные характеристики параметров шлицевого профиля втулки

Ширина шлицевого паза

10

F8

0.020

+0.035

+0.013

10.035

10,013

наружный диаметр

60

H7

0.030

0

+0.030

60

60,030

внутренний диаметр

52

H21

0.190

0

+0.190

52

52,190

Обозначение

соединения

Вид посадки

Точностные характеристики, мм

Nmax

(Smax)

Nmin

(Smin)

Nср

(Scр)

TS,N

Ø52

Без гарантированного зазора

3,49

0

1,745

3,490

Ø60

Переходная

Nmax=0,0095

Smax=0,0395

Nср=0,00475

Scр=0,01975

0,049

10

С зазором

0,07

0,026

0,022

0,044

Рисунок 5.1

6. Определение точностных характеристик резьбового соединения

Исходные данные:

Резьба М12х1,25

Определяется обозначение длины свинчивания резьбы.

2,24Рd0.2 = 2,241,25120,2=4,6<12 мм

6,7Рd0.2=6,71,25120,2= 13,76>12 мм

Следовательно, обозначение длины свинчивания – N (нормальная)

Определяются номинальные значения среднего и внутреннего диаметров резьбы болта и отверстия в корпусе (гайки).

Средний диаметр d2, D2 = d – 1 + 0,188 = 12 – 1 + 0,188 = 11,188 мм

Внутренний диаметр d1, D1 = d – 2 + 0,647 = 10,647мм

Выбор полей допусков резьбового соединения М12х1,25-

Определяются предельные отклонения и предельные размеры [3] таблица4.17

6.4.1. Для болта:

еsd2 = -0,028мм

еid2 = -0,160мм

еsd = -0,028 мм

еid = -0,160 мм

еsd1 = -0,028 мм

еid1 = - не нормируется

Диаметр резьбы болта

Средний d2 = 11,188

Наружный d = 12

Внутренний d1 = 10,647

Предельные размеры диаметров резьбы болта:

d2max = d2 + еsd2 =11,188-0.028=11,16 мм

d2min = d2 + еid2=11,188-0.240=10,948 мм

Td2 = еsd =еsd2-еid2=-0,028-(-0,160)=0,132 мм

dmax = d + еsd =12-0,028=11,972 мм

dmin = d + еid =12-0,160=11,84 мм

Td = еsd -еid =-0,028-(-0,160)=0,132 мм

d1max = d1+ еsd1 =11,647-0,028=10,619 мм

d1min – не нормируется

Td1– не нормируется

Для гайки:

ESD – не нормируется

EID = 0

ESD2 = +0,224мм

EID2 = 0

ESD1 = +0,335мм

EID1 = 0

Диаметр резьбы гайки

Средний D2 = 11,188+0,224

Внутренний D1 = 10,647+0,335

Наружный D = 12

Предельные размеры диаметров резьбы гайки

D2max = D2 + ESD2= 11,188+0,224=11,412 мм

D2min = D2 + EID2 =11,188+0=11,188 мм

TD2 = ESD2- EID2 =0,224-0= 0,224 мм

Dmax –не нормируется

Dmin = D + EID =12+0=12 мм

TD –не нормируется

D1max = D1+ ESD1=10,647+0,335=10,982 мм

D1min = D1+ EID1 =10,647+0 =10,647 мм

TD1 = ESD1- EID1 =0,335-0 =0,335мм

Максимальный зазор Smax = D2max – d2min = 11,412–10,948 = 0,464 мм

Минимальный зазор Smin = D2min – d2max = 11,188 – 11,16 = 0,028 мм

Средний зазор Sср = (Smax+ Smin)/2 = (0,464 +0,028)/2 = 0,246 мм

Допуск посадки TS = TD2 + Td2 = 0,224 + 0,132 = 0,356 мм

Таблица 6.1 Точностные характеристики

резьбового соединения М12х1-

Обозначение соединения

Вид посадки

Точностные характеристики, мм

Smax

Smin

Scp

TS

М12х1,25-

С зазором

0,464

0,028

0,246

0,356


Таблица 6.2 Точностные характеристики резьбовых деталей

Обозначение

деталей

Номинальный размер

Поле допуска

Величина допуска, мм

Предельные отклонения, мм

Предельные размеры, мм

ES (es)

EI

(ei)

Dmax (dmax)

Dmin (dmin)

d

12

6g

0,132

-0,028

-0,160

11,972

11,84

d2

11,188

0,132

-0,028

-0,160

11,16

11,028

d1

10,647

-

-

-0,028

10,619

-

D

12

-

-

-

0

-

12

D2

11,188

0,224

0,224

0

11,412

11,188

D1

10,647

0,335

0,335

0

10,982

10,647

Рисунок 6.1-Схема расположения полей допусков

резьбового соединения М12х1,25-

7. Определение точностных характеристик зубчатого зацепления

Выбирается степень точности зубчатого колеса.

Исходные данные:

Модуль m = 3 мм;

Число зубьев z = 52;

Межосевое расстояние a = 130 мм;

Окружная скоростьV = 2,5 м/с;

Рабочая температура корпуса t1 = 80С;

Рабочая температура колеса t2 = 30С.

Материал корпуса – чугун; колеса – чугун.

Для заданного зубчатого колеса в зависимости от условий его работы принимается 8-я степень точности (средней точности). [3], таблица.5.12

Расчет необходимого гарантированного зазора по неработающим профилям зубьев, выбор вида сопряжения и вид допуска бокового зазора

Рассчитывается гарантированный боковой зазор

jmin  jn1 + jn2,

где jn1 – боковой зазор, соответствующий температурной компенсации

jn1=a[p1(t1-20) - p2(t2-20)]2sin ,

где а – межосевое расстояние, мм

p1,p2 – коэффициенты линейного расширения материалов соответственно зубчатых колес и корпуса,

p1=11±110-6 С-1; ,p2 =11±110-6 С-1 [1], таблица К.1

t1, t2 – предельные температуры соответственно колес и корпуса

 - угол профиля зубчатого колеса,  = 20 [3], страница 873

jn1=130[1110 -6(80-20)-1110-6(30-20)]2sin20=0,049 мм =49 мкм

jn2 – величина бокового зазора, необходимая для размещения слоя смазки

jn2 = kcmn,

где mn – модуль зубчатого колеса, мм;

kc – коэффициент, зависящий от окружной скорости колеса [1], таблица К.2

jn2 = 123 = 36 мкм

jmin = 49 + 36 = 85 мкм

Выбирается вид сопряжения из условия, что jn mint  jn min [1], таблица К.3

Вид сопряжения – «С» (jn mint = 85 мкм)

Вид бокового зазора – «С»

Класс отклонений межосевого расстояния – IV

Отклонения межосевого расстояния fa =  50 мкм

Назначается комплекс контролируемых параметров колеса.

Комплекс контроля параметров колеса №2 [1], таблица К.4. Нормы точности:

Кинематической Fр – допуск на накопленную погрешность шага

Fр=80 мкм [3], таблица 5.8

Плавности fpt – предельное отклонение шага

fpt=±24 мкм [3], таблица 5.9

Контакта – пятно контакта

суммарное пятно контакта:

по высоте, не менее – 40%

по длине, не менее – 50% [3], таблица 5.10

Боковых зазоров Ане и Тн

Ане – наименьшее дополнительное смещение исходного контура для зубчатого колеса с внешними зубьями; Ане=120 мкм [3], таблица 5.17

Тн – допуск на смещение исходного контура; Тн=80 мкм [3], таблица 5.18

Awe – наименьшее отклонение средней длины общей нормали;

Awme=80 мкм Слагаемое 1 [2], таблица 5.19

Awme= 17 мкм Слагаемое 2 [2], таблица 5.19

Awme=80+17=97 мкм

Twm – допуск на среднюю длину общей нормали; Twm=75 мкм [3], таблица 5.20

Ace – наименьшее отклонение толщины зуба; Ace=85 мкм [3], таблица 5.21

Тс – допуск на толщину зуба; Тс=110 мкм [3], таблица 5.22

Назначаются средства контроля принятых показателей.

Таблица 7 – Средства измерения цилиндрических зубчатых колес

Измеряемый элемент

Средства измерения

специальные

универсальные

Радиальное биение зубчатого венца

Биениемеры

Плита с центрами, ролики и рычажно-чувствительный прибор

Основной шаг (шаг зацепления)

Шагомеры для основного шага

Штангенциркуль, микрометрический нормалемер

Суммарное пятно контакта

Контрольно-обкатные станки

Контрольные приспособления в рабочем корпусе

Толщина зубьев

Зубомеры

Два ролика и микрометр, штангенциркуль


8. Выбор универсальных средств измерения размеров деталей

Для отверстия 50Н8 допускаемая погрешность измерения =7 мкм [1] табл. Л1

Исходя из условия lim<,

где lim - основная погрешность средства измерения, выбирается нутромер с головкой 2ИГ ГОСТ 9244. Его метрологические характеристики приведены в таблице 8.1.

Таблица 8.1 - Метрологические характеристики нутромера с головкой 2ИГ ГОСТ 9244

Прибор

Тип (модель)

Диапазон измерения,

мм

Цена деления (отсчет по нониусу),

мм

Пределы допускаемой погрешности,

мм

Нутромер мод.109 ГОСТ 9244

109

18-50

0,002

0,0035

Для вала 50f8 допускаемая погрешность измерения =5 мкм [1] табл. Л1

Исходя из условия lim<,

где lim - основная погрешность средства измерения, выбирается гладкий микрометр ГОСТ 6507. Его метрологические характеристики приведены в таблице 8.2.

Таблица 8.2- Метрологические характеристики микрометра ГОСТ 6507

Прибор

Тип (модель)

Диапазон измерения,

мм

Цена деления (отсчет по нониусу),

мм

Пределы допускаемой погрешности,

мм

Микрометр

МК-50-1

ГОСТ 6507

МК

25-50

0,01

0,0025

9. Расчет размерной цепи

Расчет размерной цепи методом, обеспечивающим полную взаимозаменяемость

Исходные данные

A = 3мм

A1 = ? мм

A2 = 30 мм

A3 = 8 мм

A4 = 12 мм

A5 = 70 мм

A6 = 22 мм

A7 = 8 мм

Рисунок 8.1-Схема размерной цепи

А1 = А3 + А4+ А5+ А6 + А7 + А- А2

А1 = 8+12+70+22+8+3-30=93 мм

Увеличивающие звенья – A1, A2,

Уменьшающие звенья – A3, A4.A5, A6, A7.

Проверяется выполнимость условия

3= (93+30)-(8+12+70+22+8)

3=3 – условие выполняется

Определяется среднее количество единиц допуска (коэффициент точности)

где ТA - допуск замыкающего звена, мкм, ТA=800 мкм;

- суммарный допуск стандартных изделий, входящих в состав размерной цепи

= 0

i – значение единицы допуска каждого составляющего звена, мкм,

i = 2,17+1,31+0,09+1,08+1,86+1,31+0,9=9,53 мкм [3] таблица М.2

Определяется квалитет составляющих звеньев по найденному значению аср., исходя из условия астаср.

A1 =93 ; аст=100 (11 квалитет)

A2 = 30; аст=100 (11 квалитет)

A3=8; аст=64 (10 квалитет)

A4=12; аст=64 (10 квалитет)

A5 =70; аст=64 (10 квалитет)

A6 =22; аст=64 (10 квалитет)

A7 =8; аст=64 (10 квалитет)

Определяются допуски составляющих звеньев ТAi по выбранному квалитету точности и номинальным размерам соответствующих звеньев Ai, используя данные [1] таблицы М.2

A1 =93 ; Т A1= 220мкм

A2 = 30; Т A2=130 мкм

A3=8; Т A3=58 мкм

A4=12; ТA4=70 мкм

A5 =70; ТA5 =120 мкм

A6 =22; ТA6 =84 мкм

A7 =8; ТA7 =50 мкм

Производится проверка равенства

800 220+130+58+70+120+84+58= 740 мкм

Определяется погрешность: , что допустимо.

Получены предельные отклонения звеньев:

A1 =93±IT11/2(±0,11)

A2 = 30± IT11/2(±0,065)

A3=8 H20 (-0,058)

A4=12 H20 (-0,07)

A5 =70 H20 (-0,12)

A6 =22 H20 (-0,084)

A7 =8 h10 (-0,058)

Проверяется правильность назначенных отклонений составляющих звеньев:

0,28  (0,11+0,065) - (-0,058-0,07-0,12-0,084-0,058) = 0,565 мкм

-0,52  (0,11+0,065) - (0+0+0+0+0)=0,175 мкм

В качестве увязочного звена выбираем ступенчатый размер А1.

Получены предельные отклонения звена:

A1 =93b11()

Производится проверка равенства:

800 220+130+58+70+120+84+58= 740 мкм

Проверяется правильность назначенных отклонений составляющих звеньев:

0,28  (0,220+0,065) - (-0,058-0,07-0,12-0,084-0,058) = 0,235 мкм

-0,52  (-0,440-0,065) - (0+0+0+0+0)=-0,505 мкм

800  220+130+58+70+120+84+58= 740 мкм

Таблица 9.1 Расчетные данные размерной цепи

Номинальный размер с обозначением, мм

Квалитет

Поле допуска

Разновидность составляющего звена

Предельное отклонение, мкм

Предельные размеры, мм

Es

Ei

max

min

A = 3

-

-

Замыкающее

0

-0,52

3

2,48

A1 = 93

11

b11

Увеличивающее

-0,220

-0,440

92,78

92,56

A2 = 30

11

Js11

Увеличивающее

+0,065

-0,065

30,065

29,935

A3 = 8

10

h10

Уменьшающее

0

-0,058

8

7,942

A4 = 12

10

h10

Уменьшающее

0

-0,07

12

11,93

A5 = 70

10

h10

Уменьшающее

0

-0,12

70

69,88

A6 = 22

10

h10

Уменьшающее

0

-0,084

22

21,916

A7 = 8

10

h10

Уменьшающее

0

-0,05

8

7,95

Расчет размерной цепи теоретико-вероятностным методом

Исходные данные

A = 3мм

A1 = 93 мм

A2 = 30 мм

A3 = 8 мм

A4 = 12 мм

A5 = 70 мм

A6 = 22 мм

A7 = 8 мм

Рисунок 9.2-Схема размерной цепи

Увеличивающие звенья – A1, A2,

Уменьшающие звенья – A3, A4.A5, A6, A7.

Определяется среднее количество единиц допуска:

,

где t =3 – коэффициент принятого процента риска замыкающего звена

 =1/3 - коэффициент относительного рассеяния

Определяется квалитет составляющих звеньев по найденному значению аср., исходя из условия астаср.

A1 =93 ; аст=250 (13 квалитет)

A2 = 30; аст=250 (13 квалитет)

A3=8; аст=160 (12 квалитет)

A4=12; аст=160 (12 квалитет)

A5 =70; аст=160 (12квалитет)

A6 =22; аст=160 (12 квалитет)

A7 =8; аст=160 (12 квалитет)

Определяются допуски составляющих звеньев ТAi по выбранному квалитету точности и номинальным размерам соответствующих звеньев Ai, используя данные [1] таблицы М.2

A1 =93 ; Т A1= 540мкм

A2 = 30; Т A2=330 мкм

A3=8; Т A3=150 мкм

A4=12; ТA4=180 мкм

A5 =70; ТA5 =300 мкм

A6 =22; ТA6 =180 мкм

A7 =8; ТA7 =150 мкм

Производится проверка равенства

= 774,79 800

Определяется погрешность: , что допустимо.

Получены предельные отклонения звеньев:

A1 =93±js11(±0,270)

A2 = 30 ±js11 (±0,165)

A3=8 H20 (-0,150)

A4=12 H20 (-0,180)

A5 =70 h10 (-0,300)

A6 =22 h10 (-0,180)

A7 =8 h10 (-0,150)

Проведем проверку правильности решения задачи

800  = 774,79 800

;

где

0,28  ((0,27+0,165) - (0+0+0+0+0)) + 0,50,025 =0,4835

-0,52  ((-0,27-0,165) - (-0,15-0,180-0,3-0,18-0,15)) - 0,50,025 = 0,5125

В качестве увязочного звена выбираем ступенчатый размер А1.

Получены предельные отклонения звена:

A1 =93b13()

Проведем проверку правильности решения задачи

800  = 774,79 800

Проверяется правильность назначенных отклонений составляющих звеньев:

;

где

0,28  ((-0,22+0,165) - (0+0+0+0+0)) + 0,50,025 =0,4835

-0,52  ((-0,75-0,165) - (-0,15-0,180-0,3-0,18-0,15)) - 0,50,025 = 0,0325

Таблица 9.2 Расчетные данные размерной цепи

Номинальный размер с обозначением, мм

Квалитет

Поле допуска

Разновидность составляющего звена

Предельное отклонение, мкм

Предельные размеры, мм

Es

Ei

max

min

A = 3

-

-

Замыкающее

0

-0,52

3

2,48

A1 = 93

16

b13

Увеличивающее

+0,22

-0,76

93,22

92,24

A2 = 30

16

Js13

Увеличивающее

+0,165

-0,165

30,165

29,835

A3 = 8

15

H22

Уменьшающее

0

-0,150

8

7,85

A4 = 12

15

H22

Уменьшающее

0

-0,180

12

11,82

A5 = 70

16

H22

Уменьшающее

0

-0,3

70

69,7

A6 = 22

15

H22

Уменьшающее

0

-0,180

22

21,82

A7 = 8

15

H22

Уменьшающее

0

-0,150

8

7,85

Результаты расчета методами полной взаимозаменяемости и теоретико-вероятностным сведены в одну таблицу.

Таблица 9.3 Результаты расчета размерной цепи теоретико-вероятностным методом и методом полной взаимозаменяемости

Номин. размер, мм

Квалитет

Основное отклонение

Разновидность составляющего звена

Предельные отклонение, мкм

Предельные размеры, мм

Теоретико-вероятностный метод

Метод полной взаимозамен.

Теоретико-вероятностный метод

Метод полной взаимозамен.

Теоретико-вероятностный метод

Метод полной взаимозамен.

Es

Ei

Es

Ei

max

min

max

min

A=3-0,52

-

-

Замык

0

-0,52

0

-0,52

3

2,48

3

2,48

A1=93

13

11

b

Увел

+0,22

-0,76

-0,220

-0,440

93,22

92,24

92,78

92,56

A2=30

13

11

Js

Увел

+0,165

-0,165

+0,065

-0,065

30,165

29,835

30,065

29,935

A3=8

12

10

h

Уменьш

0

-0,150

0

-0,058

8

7,85

8

7,942

A4=12

12

10

h

Уменьш

0

-0,180

0

-0,07

12

11,82

12

11,93

A5=70

12

10

h

Уменьш

0

-0,3

0

-0,12

70

69,7

70

69,88

A6=22

12

10

h

Уменьш

0

-0,180

0

-0,084

22

21,82

22

21,916

A7=8

12

10

h

Уменьш

0

-0,150

0

-0,05

8

7,85

8

7,95

Сравнительный анализ методов расчета. В результате проведения расчета размерной цепи двумя методами выяснили, что при теоретико-вероятностном методе получаем менее точные размеры деталей (12-13 квалитеты), а при методе полной взаимозаменяемости – более точные (10-11 квалитеты). При этом точность размерной цепи не меняется. Следовательно, теоретико-вероятностный метод наиболее целесообразен для применения, т.к. при одинаковой точности расчёта он даёт менее жесткие требования к изготовлению детали, что повышает экономичность производства.

Список использованных источников

1. Лисовская З.П. Нормирование точностных параметров типовых соединений деталей приборов и машин (в курсовом и дипломном проектировании): Учебное пособие / З.П. Лисовская, В.Н. Есипов. – Орел: ОрелГТУ, 2002. – 122 с

2. Допуски и посадки: Справочник в 2-х ч. Ч.1 / Под ред. В.Д. Мягкова. – 5-е изд., перераб. и доп. – Л.: Машиностроение. Ленингр. отд-ние , 1979 – 544 с.: ил.

3. Допуски и посадки: Справочник в 2-х ч. Ч.2 / Под ред. В.Д. Мягкова. – 5-е изд., перераб. и доп. – Л.: Машиностроение. Ленингр. отд-ние , 1979 – с. 545 – 1032: ил.

4. Марков Н.Н., Ганевский Г.М. Конструкция, расчет и эксплуатация измерительных инструментов и приборов. – М.: Машиностроение, 1981. – 367 с., ил.