Разработка и расчет двигательной установки на базе стационарного плазменного двигателя

Министерство образования и науки Украины

Харьковский национальный аэрокосмический университет

им. Н. Е. Жуковского

«ХАИ»

Кафедра энергосиловых установок о двигателей ЛА

Разработка и расчет двигательной установки на базе

стационарного плазменного двигателя

пояснительная записка

к курсовой работе по курсу

«Основы теории и функционирования плазменных ускорителей»

Студент гр. xxxxxxxxxxxxxx.

______________ ________________

Консультант

Доцент xxxxxxx

Канд. тех. наук

xxxxxxxxx.

Нормконтроль

Ст. прxxxxx, к. т. н.

xxxxxxxxxx.

Харьков 2008г

Введение

Космические летательные аппараты, используемые для работы на различных орбитах вокруг Земли и для межпланетных полетов внутри солнечной системы, в большинстве случаев оснащены двигательными установками на основе электрореактивных двигателей, которые создают тягу необходимую для изменения положения летательного аппарата в космическом пространстве. Использование такого типа движителей целесообразно, так как они обеспечивают заданную тягу при меньших затратах рабочего тела по сравнению с двигателями другого типа.

С помощью электрореактивных двигательных установок можно решать следующие задачи: коррекцию орбит искусственных спутников Земли; обеспечение ориентации искусственных спутников Земли; выведение этих спутников на заданную орбиту; перевод космических аппаратов с опорной (околоземной) орбиты на более высокую, включая и задачи вывода космического летательного аппарата на геостационарную орбиту; обеспечение полета космического ЛА к другим планетам солнечной системы, кометам, астероидам и т.д.

Список условных обозначений, индексов и сокращений

b>k>> >– ширина ускорительного канала, м;

C>- цена тяги, Н/Вт;

D - средний диаметр движителя, м;

D>вп>, R>вп >- диаметр и радиус внутреннего полюсного наконечника, м;

D>нп>, R>нп >- диаметр и радиус наружного полюсного наконечника, м;

D>- габаритный размер движителя, м;

e – единичный заряд, Кл;

- токовый эквивалент массового расхода рабочего тела, А;

I>p >- разрядный ток, А;

I>уд >- удельный импульс, м/с;

l>k>> >– длина ускорительного канала, м;

M- масса атома ксенона, кГ;

, - массовый расход рабочего тела через анодный блок и катод, кГ/с;

N>- кинетическая мощность потока ионов, Вт;

N>p>> >- разрядная мощность, Вт;

N>- тяговая мощность, Вт;

P - тяга движителя, Н;

U>p>> >- разрядное напряжение, В;

δ>- толщина выходных кромок разрядной камеры, м;

η>- тяговый КПД движителя;

φ>i>> >- потенциал ионизации рабочего тела, эВ;

τ>дв> - ресурс движителя, с;

КПД - коэффициент полезного действия;

РК – разрядная камера;

РТ - рабочее тело;

СПД - стационарный плазменный двигатель;

ЭРД - электроракетный двигатель

1. РАСЧЕТ ОСНОВНЫХ ЭНЕРГЕТИЧЕСКИХ

ХАРАКТЕРИСТИК И ОСНОВНЫХ РАЗМЕРОВ СПД

Расчёт основных характеристик и основных размеров СПД произведён в соответствии с экспериментально-теоретическими методическими разработками, изложенными в [1, 2, 3, 4], в которых приведены некоторые промежуточные расчёты и дано более подробное объяснение используемых далее соотношений.

К числу основных параметров, с помощью которых можно описать СПД типовой схемы, представленной на рис. 1, относятся:

а) диаметр наружной поверхности ускорительного канала D>, определяющий типоразмер модели (М-70, М-100, М-140, М-200, М-290);

б) средний диаметр разрядной камеры D;

в) ширина канала b>;

г) длина канала l>k>;

д) толщина выходных кромок разрядной камеры δ>k>;


Для общей характеристики конструкции движителя используются также габаритные размеры D> и l>, внутренний диаметр наружного полюсного наконечника D>нп>=D+b>k>+2·δ>k> и диаметр внутреннего полюсного наконечника D>вп>=D-b>k>-2·δ>k>. В качестве основной задачи расчёта рассматривается задача по определению совокупности значений перечисленных размеров, а также параметров магнитной системы (количество ампер-витков и размеры элементов магнитопровода), которые обеспечивают выполнение заданных требований. Перечисленные размеры определяются с использованием величины среднего диаметра движителя, что должно обеспечить идентичность относительного распределения потенциала и других локальных параметров в РК, и, т.о., обеспечить выполнение условий подобия процессов ионизации и ускорения рабочего тела (РТ) в РК. Как следствие, это позволяет ожидать идентичности интегральных характеристик моделей различного масштаба в сопоставимых условиях работы. В качестве критерия подобия используется условие [4], где λ>– средняя длина пробега атома РТ до ионизации, - массовый расход РТ через канал с площадью проходного сечения S>k>. Постоянство этого соотношения при прочих равных условиях ограничивает, в частности, минимальную величину концентрации (≈1019 m-3) РТ в РК и, т.о., позволяет определить минимальное значение массового расхода, необходимого для эффективной ионизации и ускорения РТ в движителе. В случае использования ксенона в качестве РТ для достижения приемлемого тягового КПД условие минимального массового расхода приобретает следующий вид

.

Суммарный массовый расход двигателя определяется как

.

Подставляя данные, рассматриваемого, в качестве примера, технического задания (ТЗ), получаем кг/с. При условии, что суммарный массовый расход определяется расходами через анодный блок - и через катод - , полагая в первом приближении, что расход через анодный блок для рассматриваемого ТЗ определяем как . Исходя из ограничения на минимальную величину массового расхода, определяем значение среднего диаметра D=0,06 м.

На основе анализа накопленного опыта по разработке и эксплуатации СПД определены соотношения основных геометрических размеров движителя с тем, чтобы при различных значениях массового расхода и мощности достигался режим работы СПД близкий к оптимальному: ширина ускорительного канала b>k>=0.25·D=0.015м; толщина выходной кромки разрядной камеры =0.006 м; протяжённость ускорительного канала l>k>=b>k>+2·δ>k>.= 0.027 м . Для рассматриваемого ТЗ b>k>=0.02 м, , l>k>=0.036 м.

Наружный диаметр ускорительного канала определяется как D>H>=D+b>k>=0.075 м. Внутренний диаметр ускорительного канала определяется как D>B>=D-b>k>=0.06 м. Габаритные размеры движителя определяются как и .

1.1 Определение тяговой и кинетической мощностей струи ионов

Тяговую мощность струи ионов определяем по формуле

Подставляя значения, получаем

.

Кинетическую мощность ионного потока на выходе из РК определяем по формуле

где в зависимости от сорта РТ и разрядного напряжения коэффициенты: характеризует разброс угла вылета ионов относительно оси СПД; - разброс ионов по энергии. Больший разброс соответствует меньшему напряжению U>p>. = 0,95…0,97 и = 0,93…0,98 для Хе в диапазоне U>p>=200…300 B [1, 3]. Принимаем = 0,95 и = 0,95.

Тогда величина кинетической мощности струи ионов

Вт.

1.2 Определение протяжённости слоя ионизации РТ

В качестве характерной толщины l> слоя, в котором преимущественно происходит ионизация РТ, выбираем такую величину, которая обеспечивает вероятность ионизации РТ не менее 95%. Тогда согласно [1, 3]

,1.1

где λ> – средняя длина пробега атома до ионизации ударом электрона; - средняя, на протяжении слоя ионизации, скорость движения атомов РТ вдоль РК, определяемая температурой анода; =- коэффициент скорости ионизации атома Хе при сечении ионизации σ>i> и скорости электронов v>e>; - среднее, на протяжении слоя ионизации, произведение концентрации электронов на коэффициент скорости ионизации; k= - постоянная Стефана-Больцмана; Т>=800…1000 К – диапазон температуры анода при разрядном напряжении от 150 до 350 В; =12,1 эВ - потенциал ионизации атома ксенона; e= Кл – единичный заряд; S>k> - площадь поперечного сечения ускорительного канала.

Площадь поперечного сечения ускорительного определяем по формуле

.

Подставляя полученные ранее значения, определяем

.

По формуле 1.1 определяем протяжённость слоя ионизации

.

Полагая, что 95% РТ ионизируется, а затем и ускоряется уже в виде ионов разностью потенциалов , сосредоточенной на протяжении слоя ионизации до средней скорости V>ион>, определяем концентрацию электронов исходя из условия неразрывности потока массы в РК:

,

где кг - масса иона ксенона; В - перепад потенциала в слое ионизации при потенциале ионизации ксенона – φ>=12.1 В.

Подставляя полученные ранее значения, получаем .

Рассчитанная концентрация электронов соответствует режиму работы движителя близкому к оптимальному.

    1. Расчет разрядного тока и напряжения разряда

Разрядное напряжение определяем с учётом т.н. “эквивалентной разности потенциалов” участка, на котором преимущественно происходит ускорение ионного потока, прикатодного падения потенциала В, а также суммы перепадов потенциала вблизи анода (≈φ>) и перепада потенциала в слое ионизации

.

Эквивалентная разность потенциалов, которая определяет ускорение ионов, вычисляется по формуле:

1.2

где k> – коэффициент аккомодации энергии ионов поверхностью стенки принимается как k>=1; - токовый эквивалент массового расхода; - коэффициент, учитывающий долю ионного тока, выпадающего на стенки РК на протяжении (см. рис. 1.2) слоя ионизации и ускорения (СИУ) - l>СИУ>; N> - кинетическая мощность струи ионов. Коэффициент рассчитывается по эмпирической формуле

1.3

Величина l>СИУ> может быть определена на основе анализа экспериментальных данных, полученных с использованием СПД различных типоразмеров. Результаты анализа указывают на то, что СИУ занимает область РК, в которой радиальная составляющая индукции магнитного поля на средней линии канала (см. рис. 2). Полагая, что величина магнитного поля значительно спадает на протяжении l>k> по экспоненциальной зависимости, величина может быть определёна с достаточной точностью из соотношения

,

где - максимальная (вблизи выхода из РК) величина индукции магнитного поля на средней линии ускорительного канала (определяется далее), а - протяжённость ускорительного канала, определённая ранее.



Рис. 2. Локализация слоя ионизации и ускорения в РК движителя φ - Угол поворота профиля РК после приработки ().

---- Профиль РК по окончанию проектировочного периода (τ>дв>) работы СПД. Пунктиром обозначены линии равного потенциала ускоряющего электрического поля.

Величину определяем условиями, необходимыми для обеспечения азимутального дрейфа электронов в РК и прямо-пролётного движения ионов - для ларморовских радиусов электрона R>л.е> и иона R>л.и> должны выполняться соотношения R>л.е><<b>k> и R>л.и> >>b>k>. При этом экспериментальными данными об интегральных характеристиках СПД различных типоразмеров подтверждено, что для режимов близких к оптимальным выполняется соотношение . Тогда подставляя определённые ранее значения b>k> и U>p>, вычисляем

и протяжённость СИУ

.

Подставляя значения в 1.3, получаем .

Токовый эквивалент массового расхода рассчитываем с учётом определённого ранее значения массового расхода по формуле

А.

Подставляя в 1.2 полученные ранее величины, рассчитываем

В.

Определяем разрядное напряжение

В.

Определяем оценочное значение разрядного тока по формуле

.

Проверяем условия и оценивая напряжённость электрического поля как В/м. При =24.7 mTl рассчитываем R>л.е>≈ 1.5·10-3 м<<b>k>=0.02 м и R>л.и>≈2,2 м>>b>k>, что подтверждает выполнение условий “замагниченности” электронов и прямо-пролётного движения ионов в РК в скрещенных электрическом и магнитном полях.

    1. Расчет КПД и ресурса движителя

Разрядную мощность расчитываем как

.

Для данных ТЗ .

Цену тяги определяем по формуле

.

Подставляя значения, получаем .

Определяем тяговый КПД по формуле

.

С учётом рассчитанных значений .

Далее рассчитываем параметры, определяющие ресурс двигателя. Рассчитываем период приработки РК двигателя, в течение которого происходит снижение и стабилизация скорости эрозии выходных кромок РК потоком ионов

,

где - величина тока ионов, бомбардирующих стенку РК.

,

где - объёмный коэффициент распыления поверхности стенок РК (материал - АБН) ионами Хе при разрядном напряжении 460 В [1-3].

.

Толщина кромки разрядной камеры, которая распыляется ионами за произвольное время τ, определяется зависимостью

, 1.4

где - константа (м), определяемая далее; - время работы двигателя.

Толщину кромки разрядной камеры , которая распыляется ионами за время (в течение которого происходит снижение скорости эрозии из-за поворота профиля эродирующего участка РК на угол φ=150…200), вычисляем по формуле

,

где - длина эродирующего участка (см. рис. 2) соответствует протяжённости СИУ в РК движителя; принимается φ=170.

Рассчитывается величина м.

По формуле 1.4 определяем константу м – глубина эрозии за период приработки РК.

Рассчитываем толщину стенки РК, необходимую для обеспечения требуемого ресурса работы движителя по формуле 1.2

м.

Для того чтобы движитель мог функционировать в течение заданного ресурса времени, величина должна быть меньше, чем толщина выходных кромок разрядной камеры . Проверка этого предположения показывает, что

Т.о., требование по обеспечению заданного ресурса работы РК СПД выполнено.

1