Определение равновесной температуры воздуха в охлаждаемом помещении (на примере низкотемпературных прилавков и шкафов)
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ПРИКЛАДНОЙ БИОТЕХНОЛОГИИ
Кафедра «Холодильная техника»
ХОЛОДИЛЬНЫЕ УСТАНОВКИ
ОПРЕДЕЛЕНИЕ РАВНОВЕСНОЙ ТЕМПЕРАТУРЫ ВОЗДУХА В ОХЛАЖДАЕМОМ ПОМЕЩЕНИИ ( НА ПРИМЕРЕ НИЗКОТЕМПЕРАТУРНЫХ ПРИЛАВКОВ И ШКАФОВ )
Методические указания к лабораторной работе для студентов специальностей 140504, 190603 и направления 140500
ВВЕДЕНИЕ
Настоящая лабораторная работа посвящена изучению и закреплению знаний студентов по разделу "Типы холодильных установок, холодильников, параметры охлаждающей среды” курса “Холодильные установки”. В то же время, в той или иной степени, рассматриваются отдельные вопросы разделов: "Изоляция охлаждаемых помещений", "Расчет теплопритоков в охлаждаемые помещения”, “Способы охлаждения помещений и аппаратов", "Малые холодильные установки". Студенты также знакомятся с оборудованием лабораторного стенда и его приборами, методикой проведения исследований, с различными производственными ситуациями по установлению температуры воздуха в охлаждаемом помещении.
При включении холодильной машины
в охлаждаемом помещении устанавливается
температура
ниже температуры
наружного (окружающего
помещение) воздуха. Тогда внутрь помещения
начнут проникать теплопритоки через
наружные ограждения
,
при этом от продуктов (грузов), располагаемых
в охлаждаемом помещении, будет отводиться
теплоприток
.
Кроме того, при эксплуатации охлаждаемого
помещения в него будут проникать
теплопритоки
,
вносимые при открывании дверей и
выделяемые различными источниками,
находящимися внутри помещения (от людей,
от осветительных приборов, от двигателей
и др.). Все эти теплопритоки должны быть
отведены испарителем холодильной машины
(
).
В установившемся состоянии наступит
равенство подводимых в камеру теплопритоков
и отводимых испарителем, т.е. при балансе:
При наступлении равновесия между теплопритоками и теплоотводом в камере установится определенная температура, называемая равновесной температурой.
Рассмотрим наиболее простой
случай, когда внутрь охлаждаемого
помещения проникают только наружные
теплопритоки
.
Такое допущение вполне реально. Например,
если в камеру хранения положили
охлажденные или замороженные грузы,
имеющие температуру
,
то от них теплопритока не будет. Не будет
теплопритока от грузов и в случае, если
это камера длительного хранения, куда
грузы заложены уже давно и их температура
стала равна температуре в охлаждаемом
помещении. Исключение составляют плоды
и овощи, которые при хранении (при
температуре выше температуры замерзания)
выделяют теплоту "дыхания".
При закрытых дверях в камеры не
будут поступать теплопритоки, вызванные
открыванием дверей, а специальные камеры
для хранения продуктов в регулируемой
газовой среде вообще открываются редко
и доступ в них людей возможен только в
специальном противогазе, защищающем
органы дыхания. При отсутствии людей в
камерах освещение должно выключаться,
следовательно, теплопритока от освещения
не будет. Поэтому возможно (для простоты)
принять, что
.
Для ограждения, не подверженного действию
солнечной радиации:
(1)
Холодопроизводительность испарителя:
(2)
Из уравнений (1) и (2) следует, что равновесная температура воздуха в охлаждаемом помещении:
,
(3)
где:
,
- коэффициенты теплопередачи
наружного ограждения камеры и охлаждающего
прибора (батареи, воздухоохладителя)
соответственно,
;
,
- площади поверхностей
наружных ограждений охлаждаемого
помещения и охлаждающих приборов
соответственно,
;
- температура рабочего тела
(кипения хладагента) в приборах охлаждения,
.
Наличие других (кроме
)
теплопритоков приведет к
повышению температуры в охлаждаемом
помещении. При этом установится
равновесная
температура:
(3а)
Холодильные установки работают
при переменных внешних условиях, поэтому
рассматриваемое равновесие является
временным явлением. Соответствующие
преобразования уравнения (3) приводят
к выводу, что температура воздуха в
охлаждаемом помещении в общем виде
устанавливается на уровне:
Выполнение работы рассчитано на 4 часа. При этом значительная часть расчетов и оформление работы проводится во внеаудиторное время (в аудитории, библиотеке, дома).
В содержание отчета должно входить:
- титульный лист
- оформленные журнала наблюдений;
расчеты; построенные на их основе графики
зависимостей
,
,
,
;
выводы об установлении
,
,
коэффициента рабочего времени машины
;
проведенные сравнения
расчетных и наблюдаемых в лабораторной
работе величин;
- умение ответить на поставленные вопросы.
Порядок выполнения работы
УСТРОЙСТВО ЛАБОРАТОРНОГО СТЕНДА
Лабораторный стенд смонтирован на базе холодильного низкотемпературного прилавка ПХН-1-0,4 М с холодильной машиной. Стенд включает потенциометр КСП-4 многоточечный, инструмент, приборы КИП.
НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ ХОЛОДИЛЬНОГО НИЗКОТЕМПЕРАТУРНОГО ПРИЛАВКА
Прилавок ПХН-1-0,4 М предназначен для кратковременного хранения и продажи непосредственно из него предварительно замороженных продуктов в продовольственных магазинах и имеет следующую техническую характеристику:
- средняя температура за цикл в центре охлаждаемого объема (при температуре окружающего воздуха не более 32°С и его относительной влажности не более 55%) °С____________________________________- 13;
- номинальный внутренний объем, м3_________________________0,4;
- максимальная одновременная загрузка продуктов, кг___________80;
Характеристика холодильного агрегата:
- тип_________________________________________________ВН 400;
- холодопроизводительность, Вт_____________________________410;
- расположение____________________________________встроенный;
- холодильный агент_____________________________R134а или R22 ;
- ток______________________________________________трехфазный;
- установленная мощность, Вт, не более_______________________411;
коэффициент рабочего времени холодильного агрегата, не более
________________________________________________________0,75;
- оттаивание испарителя автоматическое, с помощью трубчатого электронагревателя мощностью, Вт_____________________________400;
- масса, кг, не более_______________________________________210.
Описание конструкции прилавка
Прилавок холодильный низкотемпературный (рис. 1) состоит из холодильной камеры и машинного отделения.
Холодильная камера представляет собой короб, внутренняя обшивка которого выполнена из листового алюминия. Наружные обшивки прилавка выполнены из листовой стали, окрашенной в белый цвет. Между наружными обшивками и внутренним коробом уложен теплоизоляционный материал ПСБ-С. Изоляционный материал окрашен с обеих сторон битумом толщиной по 1 мм для уменьшения возможности его увлажнения.
Рис. 1. Продольный разрез прилавка холодильного низкотемпературного ПХН-1-0,4 М:
1 – машинное отделение; 2 – поддон; 3 – воздухоохладитель; 4, 5 – манометры; 6 - термометр наружного воздуха; 7 – манометрический термометр; 8 – створки раздвижные; 9 – потенциометр КСП-4; 10 – холодильная камера; 11 – решетки для продуктов; 12 – щитки воздуховодов; 13 – теплоизоляция; 14 – термореле ТР-1-02Х.
Доступ в камеру осуществляется сверху через две раздвижные створки. Машинное отделение с трех сторон имеет легкооткрывающиеся решетки. Внутри машинного отделения установлен холодильный агрегат и при боры автоматики. Температура в охлаждаемом объеме поддерживается на расчетном режиме работой холодильной машины (рис. 2), которая состоит из холодильного агрегата, испарителя, терморегулирующего вентиля, конденсатора.
Циркуляция охлажденного воздуха в объеме камеры - искусственная.
Автоматическое управление работой холодильного агрегата осуществляется с помощью термореле TP-I-02X. Для контроля температуры в объеме камеры предусмотрен манометрический термометр, смонтированный на стенке с наружной стороны прилавка.
Оттаивание инея с испарителя осуществляется трубчатым электронагревателем, а автоматическое управление оттаиванием испарителя осуществляется реле времени и температуры РВТ 12/24. Конденсат из испарителя стекает в поддон, расположенный в машинном отделении. Дальнейшее удаление влаги из поддона необходимо производить в какую-либо емкость не реже одного раза в сутки.
Рис. 2. Схема холодильной Рис. 3. Конструкция наружного
машины: ограждения прилавка:
1 – компрессор холодильного 1 – алюминиевый лист;
агрегата; 2 – вентиль двуххо- 2 – теплоизоляция;
довой; 3,7 – манометры; 3 – слой пароизоляции(битум);
4 – испаритель(воздухоохла- 4 – стальной лист.
дитель); 5 – вентилятор с дви-
гателем воздухоохладителя;
6 – вентиль терморегулирую-
щий 22ТРВ-0,6В; 8 – конден-
сатор; 9 – вентилятор с двига-
телем конденсатора; 10 - ресивер.
Холодильный агрегат ВН 400
Агрегат холодильный герметичный поршневой низкотемпературный ВН 400 является частью холодильной установки и располагается в машинном отделении. Холодильная установка работает нормально при температуре окружающего воздуха от -5 до +45°С.
Техническая характеристика агрегата:
- холодопроизводительность номинальная (при температуре кипения хладагента -35°С и температуре окружающего воздуха +20°C), Вт____410;
- компрессор:
тип__________________________________герметичный поршневой;
число цилиндров N , шт.____________________________________2;
диаметр цилиндров Dц, м________________________________0,036;
ход поршня S , м________________________________________0,018;
синхронная частота вращения вала n , с-1______________________25;
- конденсатор:
тип__________________ребристо-трубный воздушного охлаждения;
площадь поверхности охлаждения, м2________________________2,2;
- воздухоохладитель:
тип________________________________________ребристо-трубный;
площадь поверхности F>o>, м2_______________________________4,33;
- ресивер вертикального типа емкостью, м3_________________0,0014;
- электродвигатель компрессора мощностью, N>ДВ.К>, Вт__________370;
- электродвигатель вентилятора мощностью N>ДВ. В>, Вт___________30.
Потенциометр КСП-4
Потенциометр КСП-4 многоточечный предназначен для измерения температуры воздуха в камере, на поверхности ребер и на поверхности трубок воздухоохладителя. В качестве датчиков применяются хромель-копелевые термопары.
ОПРЕДЕЛЕНИЕ РАЗЛИЧНЫХ ХАРАКТЕРИСТИК ЛАБОРАТОРНОГО СТЕНДА
1. Изучите устройство изолированного ограждения. Для этого откройте крышку прилавка над воздухоохладителем. Измерьте штангенциркулем толщину составляющих элементов изолированного ограждения (стенки): стального листа, алюминиевого листа, теплоизоляции (рис. 3). Примите, что толщина слоя пароизоляции (битума) с каждой стороны изоляции составляет по 0,001 м. Познакомьтесь с материалами, их структурой, свойствами. Результаты запишите в журнал наблюдений (табл. 1) в колонки 3 и 5. При этом учтите "Описание конструкции прилавка”. Используя приложение 1, впишите в табл. 1, колонку 7 значения коэффициентов теплопроводности материалов.
Для простоты проведения лабораторной работы и расчетов примите, что все ограждения, в том числе покрытие (створки) и днище прилавка, однотипны, и их конструкции соответствуют рис. 3. Следовательно, размеры элементов конструкций такие же, как у стенки.
2. Нарисуйте схему, как на рис. 4. Определите наружные размеры А, В, С, Д, Е (в метрах) наружного ограждения и запишите на схеме значения снятых размеров.
3. При работе холодильной установки определите температуру в следующих точках и запишите ее в табл. 2:
- с помощью термометра 6 (рис. 1)
- температуру
наружного воздуха;
- потенциометром КСП-4 9 (рис. 1) -
температуру
воздуха в камере прилавка и
уточните ее по манометрическому
термометру 7 (рис. 1) (
);
при этом
и
должны быть равны;
- с помощью потенциометра КСП-4
- температуру охлаждающей поверхности
воздухоохладителя: на поверхности ребра
()
и на поверхности стенки трубы
(
).
4. Определите избыточное давление
конденсации и кипения
и
(в атм) по манометрам 5 и 4
соответственно (рис.1) или 7 и 3 соответственно
(рис.2), Результаты занесите в табл. 2.
5. С помощью часов заметьте для
одного из циклов время включения (),
выключения (
)
и повторного включения (
)
компрессора холодильного агрегата при
данной настройке термореле холодильного
агрегата. Определите продолжительность
работы, например, в минутах:
и продолжительность
цикла:
Результаты запишите в табл. 2.
(Необходимо иметь ввиду, что
время цикла складывается из продолжительности
работы компрессора и продолжительности
- его остановки, т.е.
).
Журнал наблюдений
Таблица 1. Характеристика наружного ограждения
№ пп слоев |
Наименование |
Вид материала |
Толщина |
Коэф. теплопроводности |
||
Условное обозначение |
Численное значение, м |
Условное обозначение |
Численное значение, Вт/(мК) |
|||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
1 |
Внутренняя обшивка |
Алюминий |
|
0.001 |
|
|
2 |
Тепловая изоляция |
Пенополиуретан |
|
0.086 |
|
|
3 |
Слой пароизоляции |
Битум |
|
0.001 |
|
|
4 |
Наружная обшивка |
Сталь |
|
0.0011 |
|
|
А=2м, В=0.8 м, С=0.87 м, Д=0.42м, Е=0.58 м
Таблица 2. Параметры работы холодильной установки
Наименование измеряемой величины |
Условное обозначение |
Размерность |
Численное значение |
Температура наружного воздуха |
|
|
20 |
Температура воздуха в камере прилавка: |
|||
а) по показанию потенциометра КСП-4 или манометрического термометра |
|
|
-10 |
Температура охлаждающей поверхности воздухоохладителя: |
|||
а) поверхности ребра |
|
|
-15 |
б) поверхности стенки трубы |
|
|
-17 |
Давление конденсации хладагента: |
|
||
а) избыточное по манометру |
|
|
9 |
б) абсолютное |
|
|
|
Давление кипения хладагента: |
|||
а) избыточное по манометру |
|
|
2.7 |
б) абсолютное |
|
|
|
Вид холодильного агента |
- |
- |
R22 |
Продолжение Табл. 1. |
|||
Температура
конденсации в соответствии с давлением
конденсации,
|
|
|
|
То же (расчетная) |
|
|
|
Температура
кипения в соответствии с давлением
кипения,
|
|
|
|
То
же по
|
|
|
|
То
же по
|
|
|
|
Время первоначального включения компрессора холодильного агрегата |
|
|
10.45 |
Время отключения компрессора холодильного агрегата |
|
|
11.15 |
Время повторного включения компрессора холодильного агрегата |
|
|
11.30 |
Продолжительность работы агрегата |
|
|
30 |
Продолжительность цикла |
|
|
45 |
ПРОВЕДЕНИЕ РАСЧЕТОВ. ПОСТРОЕНИЕ ГРАФИКОВ. ВЫВОДЫ
Проведение расчетов
1. Определите коэффициент теплоотдачи от внутренней обшивки ограждения камеры к воздуху камеры. При этом используйте уравнение Юргеса:
,
где:
- коэффициент теплоотдачи
от внутренней обшивки ограждения камеры
к воздуху камеры,
;
- скорость движения воздуха в
камере; по результатам исследований
.
2. Примите коэффициент теплоотдачи
от наружного воздуха к наружной
поверхности ограждения
.
3. Определите коэффициент
теплопередачи наружного ограждения в
по формуле:
При определении
,
значения величин примите в соответствии
с их значениями, приведенными в табл.
1.
4. Определите толщину ограждения и суммарную площадь наружных ограждений из выражений:
>,>
где:
- толщина наружного ограждения,
.
Рис. 4. Схема снятия наружных размеров наружного ограждения прилавка.
5. Пользуясь выражениями:
и
,
определите абсолютные давления
и
в МПа. Установите вид хладагента
и запишите в табл. 2.
Пользуясь таблицами параметров
насыщенных паров хладогентов R134а
или R22
(приложения 2 и 3), определите температуры
конденсации
и кипения
соответственно по давлениям
и
.
Полученные результаты запишите в табл.2.
По таблице:
,
.
Проверьте полученные температуры
и
(табл. 2). Для ориентировочных
расчетов можно рекомендовать уравнения:
- для температуры конденсации (расчетной):
C,
где
C
- температура воздуха на выходе из
конденсатора;
при этом
- температура воздуха на
входе в конденсатор;
- для температуры кипения (расчетной):
C,
исходя из температуры на поверхности
ребра воздухоохладителя;
C,
исходя из температуры на стенке трубы
воздухоохладителя.
Результаты расчетов запишите в табл. 2.
6. Определите объем, описываемый поршнями компрессоров пользуясь выражением:
При расчетах используйте сведения о компрессоре ВН 400.
7. Примите в дальнейших расчетах,
что коэффициент теплопередача
воздухоохладителя составляет
.
Построение графиков
Задача определения равновесной
температуры воздуха в охлаждаемом
помещении и равновесной температуры
кипения рабочего тела в дальнейшем
решается после графического построения
зависимостей
,
,
.
Эти зависимости соответственно называются
характеристиками компрессора, испарителя,
наружного ограждения. Здесь же строится
график, характеризующий суммарные
теплопритоки
.
В общем виде они представлены на рис.
5.
Рис. 5. Характеристики компрессора, испарителя, наружного ограждения, график суммарной тепловой нагрузки.
Для построения характеристик
используйте координатную бумагу
(миллиметровку). Задайтесь масштабом
по оси ординат - для нанесения значений
(рекомендуется диапазон
)
и по оси абсцисс - для нанесения,
значений
(рекомендуемый диапазон
).
1. Постройте характеристику
наружного ограждения,
используя выражение (1). Для этого
температуре
задайте несколько произвольных значений:
а)
,
для которого
;
б)
от
до
,
в)
от
до
,
При расчетах
значения
примите согласно табл. 2.
Для построения характеристики
на оси абсцисс отложите
значение
и на оси ординат
(точка
),
далее в принятом масштабе отложите
и
и соответствующие им значения
и
(точки
и
).
Через полученные точки
,
и
проведите прямую линию
.
2. Постройте характеристику
испарителя, используя выражение (2).
Задайте температуре
несколько произвольных
значений:
a)
>
>, для которого
;
б)
из
диапазона от
до
,
в)
из диапазона от
до
,
При расчетах примите значения:
по данным табл. 2,
,
.
Для построения характеристики
на оси абсцисс в принятом ранее масштабе
отложите значение температуры
и на оси ординат соответствующее
ей
(точка
).
Далее отложите температуры
и
и соответствующие им значения
и
(точки
и
).
Через полученные точки
,
и
проведите прямую линию
.
3. Постройте характеристику
компрессора с использованием
выражения
,
(4)
где:
- холодопроизводительность компрессора,
;
- объем, описываемый
поршнями,
;
- коэффициент подачи
компрессора;
- удельная объемная
холодопроизводительность,
;
>
>- удельная массовая
холодопроизводительность,
;
>
>- удельный объем пара хладагента,
всасываемого в компрессор,
(рис. 6).
Поскольку зависимость
при
криволинейна, рекомендуется ее строить
по пяти расчетным значениям
.
Для этого задайтесь произвольными
значениями
:
,
,
,
,
.
При этом целесообразно, чтобы они имели целые значения и выбирались следующим образом:
С,
,
С
С,
С,
С.
Для этих значений произведите расчеты циклов паровой компрессионной холодильной машины. Результаты расчетов занесите в табл. 3.
Во всех пяти расчетных случаях
необходимо принять температуру
конденсации хладагента одинаковую и
равную
(табл. 2). Величина перегрева пара ∆
при всасывании его в компрессор одинакова
и принимается ∆
.
Так как в схеме данной фреоновой
холодильной машины регенеративный
теплообменник не предусмотрен, то
величина переохлаждения ∆
жидкого хладагента перед регулирующим
вентилем также одинакова и составляет
∆
.
Температура всасывания
∆
.
Температура жидкого хладагента
перед регулирующим вентилем
∆
и во всех расчетных случаях одинакова.
По известным в каждом расчетном
случае значениям
,
,
,
постройте циклы паровой
компрессионной холодильной машины в
тепловой диаграмме
для R134а
или R22
в зависимости от вида применяемого
хладагента. Значения параметров в
узловых точках цикла
,
,
,
>
>запишите в табл.3. При этом
значения
,
соответствующие температурам кипения
,
,
,
,
,
более точно могут быть определены по
приложениям 2 (для R134а)
или 3 (для R22).
Давление
примите по табл.2.
Произведите расчет цикла для каждого расчетного случая и определите:
- удельную массовую
холодопроизводительность,
,
>
>;
- отношение давления конденсации
к давлению кипения
;
- по рис. 7, в зависимости от
величины отношения
,
коэффициент подачи компрессора
(для каждого из расчетных случаев в
зависимости от вида применяемого
хладагента).
Учитывая известные величины
,
а для каждого расчетного случая
,
,
,
найдите значения
из уравнения (4). Результаты
запишите в табл. 3.
Необходимо уточнить полученные
значения
,
для этого по pиc.
8 при значениях
,
,
,
,
и соответствующей
(в вашем случае при
)
найдите паспортные значения
.
Результаты запишите в табл.3
для сравнения с
.
При существенных различиях в значениях
и
выясните причину, внесите исправления.
На оси абсцисс (рис. 5) в принятом
ранее масштабе отложите значения
температур кипения
,
,
,
,
,
а по оси ординат соответствующие им
значения
.
По полученным точкам
,
,
,
,
,
постройте график зависимости
от to
при известном значении
.
Таблица 3.
Расчет холодопроизводительности компрессора.
|
|
(таб.2) |
(таб.2) |
|
|
Энтальпия,
|
Удельный
объем пара,
|
Отношение |
Коэффициент
подачи,
|
Удельная массовая холодопроизводитель-ность > |
Расчетное
значение, >
|
Паспортные данные > (Рис. 8) |
|
|
|
||||||||||||
|
|
|
|||||||||||
|
|
|
|||||||||||
|
|
|
|||||||||||
|
|
|
|||||||||||
|
|
|
4. После определения прочих
теплопритоков постройте график суммарных
теплопритоков
.
К прочим теплопритокам
в данном случае можно отнести теплоприток
от двигателя вентилятора воздухоохладителя:
,
(5)
где:
- теплоприток от
двигателя вентилятора,
;
- мощность двигателя
вентилятора воздухоохладителя,
.
Остальные теплопритоки (от грузов, от освещения, при открывании дверей и др.) в данном случае отсутствуют.
Для построения графика суммарной
тепловой нагрузки
(рис. 5) от точек
и
(или от любых других произвольных точек
характеристики
)
параллельно оси ординат отложите вверх
отрезки
,
равные в масштабе тепловой нагрузке
.
Через точки
и
проведите график суммарной нагрузки
.
ВЫВОДЫ
На пересечении характеристик
и
(рис. 5) получаем точку
,
которой соответствует значение
(см. уравнение 3а). Следовательно, этой
точке соответствует значение равновесной
температуры
воздуха в охлаждаемом помещении. Значения
и
запишите в табл. 4.
На пересечении характеристик
и
(рис. 5) получаем точку
,
которой соответствует значение
.
Этой точке соответствует значение
равновесной температуры
кипения рабочего тела. Полученные
величины
и
запишите в табл. 4. Кроме того, значение
холодопроизводительности холодильного
агрегата
сравнить с паспортными данными (рис. 8)
при равновесной температуре
и температуре наружного воздуха
(значение
найти по графику методом интерполяции).
Определите коэффициент рабочего времени холодильного агрегата в условиях работы при равновесном состоянии:
Рис. 6. Построение цикла паровой компрессионной холодильной машины.
Рис. 7. Коэффициенты подачи компрессоров, работающих на:
1 – на R22; 2 – на R134а.
Рис. 8. Паспортные данные зависимости холодопроизводительности агрегата ВН 400 от температуры кипения хладагента и температуры окружающего воздуха.
Полученное значение коэффициента
рабочего времени сравните с опытным
,
которое необходимо определять из
уравнения:
,
где:
и
необходимо принять по табл.
2. Результаты запишите в табл. 4.
Необходимо также определить,
как изменятся температура кипения и
температура в охлаждаемом помещении,
если компрессор агрегата будет работать
с коэффициентом рабочего времени
,
т.е. непрерывно.
При
,
.
Для нахождения такого положения
необходимо построить такой единственно
возможный прямоугольник
,
точки
и
которого лежали бы на одной прямой,
перпендикулярной оси ординат и
принадлежали бы характеристикам
компрессора
и суммарной характеристике теплопритоков
соответственно, а одна из диагоналей
этого прямоугольника была бы параллельна
характеристике испарителя
.
Эта диагональ и будет новой характеристикой
испарителя
при
для данного агрегата. Точка
будет характеризовать новую температуру
в охлаждаемом помещении
,
а соответствующую ей температуру кипения
рабочего тела характеризует точка
.
При этом, холодопроизводительность
холодильной машины будет равна
.
С учетом масштаба определите
все указанные значения и занесите в
табл. 4. Сделайте вывод о целесообразности
работы агрегата при
,
т.е. при непрерывной его работе.
Таблица 4.
Результаты лабораторной работы
Наименование величин |
Условное обозначение |
Размерность |
Численное значение |
Равновесная температура воздуха в охлаждаемом помещении (по рис. 5.) |
|
|
|
То же (из табл.2) |
|
|
|
То же (из табл.2) |
|
|
|
То же (из табл.2) |
|
|
|
Холодопроизводительность
холодильной машины при установившейся
равновесной температуре кипения
|
|
|
|
Тоже
по рис. 8 при
|
|
|
|
Суммарный
теплоприток в охлаждаемое помещение
прилавка при температуре в нем
|
|
|
|
Коэффициент рабочего времени (по результатам рис.5) |
|
– |
|
То же фактическое значение (по результатам опытных данных) |
|
– |
|
Показатели
работы оборудования
|
|||
- температура воздуха в охлаждаемом помещении |
|
|
|
- температура кипения хладагента |
|
|
|
- сумма теплопритоков, холодопроизводительность холодильной машины и испарителя |
|
|
Приложение 1
Коэффициент теплопроводности некоторых материалов
Материал |
Объемная масса в сухом состоянии, кг/м3 |
Коэффициент теплопроводности, Вт/(м2К) |
Платы теплоизоляционные из пенопласта полистирольного самозатухащего ПСБ-С |
25-40 |
0,047 |
Битум нефтяной |
1050 |
0,18-0,30 |
Алюминий листовой |
- |
180 |
Сталь листовая |
- |
50 |
Приложение 2
Таблица параметров насыщенных паров R134а
Температура, °C |
Абсолютное давле-ние, МПа |
Температура, °C |
Абсолютное давле-ние, МПа |
Температура, °C |
Абсолютное давле-ние, МПа |
Температура, °C |
Абсолютное давле-ние, МПа |
-50 |
0,030 |
-26 |
0,107 |
-2 |
0,276 |
22 |
0,605 |
-48 |
0,034 |
-24 |
0,118 |
±0 |
0,300 |
24 |
0,640 |
-46 |
0,038 |
-22 |
0,129 |
2 |
0,325 |
26 |
0,680 |
-44 |
0,042 |
-20 |
0,140 |
4 |
0,350 |
28 |
0,725 |
-42 |
0,046 |
-18 |
0,152 |
6 |
0,375 |
30 |
0,770 |
-40 |
0,050 |
-16 |
0,164 |
8 |
0,400 |
32 |
0,815 |
-38 |
0,055 |
-14 |
0,176 |
10 |
0,425 |
34 |
0,860 |
-36 |
0,061 |
-12 |
0,188 |
12 |
0,450 |
36 |
0,905 |
-34 |
0,068 |
-10 |
0,200 |
14 |
0,481 |
38 |
0,950 |
-32 |
0,076 |
-8 |
0,216 |
16 |
0,510 |
40 |
1,000 |
-30 |
0,085 |
-6 |
0,233 |
18 |
0,542 |
42 |
1,100 |
-28 |
0,096 |
-4 |
0,254 |
20 |
0,570 |
44 |
1,200 |
Приложение 3
Таблица параметров насыщенных паров R22
Температура, °C |
Абсолютное давле-ние, МПа |
Температура, °C |
Абсолютное давле-ние, МПа |
Температура, °C |
Абсолютное давле-ние, МПа |
Температура, °C |
Абсолютное давле-ние, МПа |
-50 |
0,065 |
-26 |
0,194 |
-2 |
0,467 |
22 |
0,961 |
-48 |
0,071 |
-24 |
0,210 |
±0 |
0,499 |
24 |
1,015 |
-46 |
0,079 |
-22 |
0,228 |
2 |
0,532 |
26 |
1,071 |
-44 |
0,087 |
-20 |
0,246 |
4 |
0,567 |
28 |
1,130 |
-42 |
0,096 |
-18 |
0,265 |
6 |
0,603 |
30 |
1,190 |
-40 |
0,105 |
-16 |
0,286 |
8 |
0,641 |
32 |
1,253 |
-38 |
0,116 |
-14 |
0,308 |
10 |
0,648 |
34 |
1,319 |
-36 |
0,127 |
-12 |
0,331 |
12 |
0,723 |
36 |
1,387 |
-34 |
0,138 |
-10 |
0,356 |
14 |
0,767 |
38 |
1,457 |
-32 |
0,151 |
-8 |
0,381 |
16 |
0,812 |
40 |
1,530 |
-30 |
0,164 |
-6 |
0,408 |
18 |
0,860 |
42 |
1,606 |
-28 |
0,179 |
-4 |
0,437 |
20 |
0,910 |
44 |
1,685 |