Режимы работы асинхронных двигателей (работа 2)

Министерство Образования Российской Федерации

Самарский Государственный Технический Университет

Кафедра

«Электромеханика и нетрадиционная энергетика»

РЕФЕРАТ

Тема:

“РЕЖИМЫ РАБОТЫ

АСИНХРОННЫХ ДВИГАТЕЛЕЙ.”

Выполнил:

Ст-т 6-ого куса, 12 гр.,

спец. 1801,

Полукаров А.Н.

Проверил:

Булгаков В.В.

Самара

2006

1. ВВЕДЕНИЕ.

ОБЩИЕ СВЕДЕНИЯ ОБ АСИНХРОННЫХ МАШИНАХ.

Асинхронной машиной называется двухобмоточная электричес­кая машина переменного тока, у которой только одна обмотка (первичная) получает питание от электрической сети с постоян­ной частотой ω>1>, а вторая обмотка (вторичная) замыкается накоротко или на электрические сопротивления. Токи во вторичной обмотке появляются в результате электромагнитной индукции. Их частота ω>2> является функцией угловой скорости ротора Ω, которая в свою очередь зависит от вращающего мо­мента, приложенного к валу.

Наибольшее распространение получили асинхронные машины с трехфазной симметричной разноименнополюсной обмоткой на ста­торе, питаемой от сети переменного тока, и с трехфаз­ной или многофазной симметричной разноименнополюсной обмоткой на роторе.

Машины такого исполнения называют просто «асинхронными машинами», в то время как асинхронные машины иных исполнений относятся к «специальным асинхронным машинам».

Асинхронные машины используются в основном как двигатели; в качестве генераторов они применяются крайне редко.

Асинхронный двигатель является наиболее распространенным типом двигателя переменного тока.

Разноименнополюсная обмотка ротора асинхронного двигателя может быть короткозамкнутой (беличья клетка) или фазной (при­соединяется к контактным кольцам). Наибольшее распространение имеют дешевые в производстве и надежные в эксплуатации дви­гатели с короткозамкнутой обмоткой на роторе, или короткозамкнутые двигатели. Эти двигатели обладают жесткой механической характеристикой (при изменении нагрузки от холостого хода до номинальной их частота вращения уменьшается всего на 2—5%).

Двигатели с короткозамкнутой обмоткой на роторе обладают также довольно высоким начальным пусковым вращающим момен­том. Их основные недостатки: трудность осуществления плавного регулирования частоты вращения в широких пределах; потребление больших токов из сети при пуске (в 5—7 раз превышающих поминальный ток).

Двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами избавлены от этих недостатков ценой усложнения кон­струкции ротора, что приводит к их заметному удорожанию по сравнению с короткозамкнутыми двигателями (примерно в 1,5 раза). Поэтому двигатели с контактными кольцами на роторе находят применение лишь при тяжелых условиях пуска, а также при необ­ходимости плавного регулирования частоты вращения.

Двигатели с контактными кольцами иногда применяют в каскаде с другими машинами. Каскадные соединения асинхронной машины позволяют плавно регулировать частоту вращения в широком диапазоне при высоком коэффициенте мощности, однако из-за зна­чительной стоимости не имеют сколько-нибудь заметного распро­странения.

В двигателях с контактными кольцами выводные концы обмотки ротора, фазы которой соединяются обычно в звезду, присоеди­няются к трем контактным кольцам. С помощью щеток, соприка­сающихся с кольцами, в цепь обмотки ротора можно вводить доба­вочное сопротивление или дополнительную ЭДС для изменения пусковых или рабочих свойств машины; щетки поз­воляют также замкнуть обмотку накоротко.

В большинстве случаев добавочное сопротивление вводится в обмотку ротора только при пуске двигателя, что приводит к уве­личению пускового момента и уменьшению пусковых токов и облег­чает пуск двигателя. При работе асинхронного двигателя пусковой реостат должен быть полностью выведен, а обмотка ротора замкнута накоротко. Иногда асинхронные двигатели снабжаются специаль­ным устройством, которое позволяет после завершения пуска замк­нуть между собой контактные кольца и приподнять щетки. В таких двигателях удается повысить КПД за счет исключения потерь от трения колец о щетки и электрических потерь в переходном контакте щеток.

Выпускаемые заводами асинхронные двигатели предназнача­ются для работы в определенных условиях с определенными техни­ческими данными, называемыми номинальными. К числу номинальных данных асинхронных двигателей, которые указыва­ются в заводской табличке машины, укрепленной на ее корпусе, относятся:

механическая мощность, развиваемая двигателем, Р>н> = P>>;

частота сети f>1>;

линейное напряжение статора U>1лн>

линейный ток статора I>1лн>;

частота вращения ротора n>;

коэффициент мощности cos φ>1>>;

коэффициент полезного действия η>.

Если у трехфазной обмотки статора выведены начала и концы фаз и она может быть включена в звезду или треугольник, то ука-зываются линейные напряжения и токи для каждого из возможных соединений (Υ/Δ).

Кроме того, для двигателя с контактными кольцами приводится напряжение на разомкнутых кольцах при неподвижном роторе и линейный ток ротора в номинальном режиме.

Номинальные данные асинхронных двигателей варьируются в очень широких пределах. Номинальная мощность — от долей ватта до десятков тысяч киловатт. Номинальная синхронная частота вращения п>> = 60 f>1> при частоте сети 50 Гц от 3000 до 500 об/мин и менее в особых случаях; при повышенных частотах — до 100 000 об/мин и более (номинальная частота вращения ротора обычно на 2—5% меньше синхронной; в микродвигателях — на 5—20%). Номинальное напряжение от 24 В до 10 кВ (большие значения при больших мощностях).

Номинальный КПД асинхронных двигателей возрастает с ростом их мощности и частоты вращения; при мощности более 0,5 кВт он составляет 0,65—0,95, в микродвигателях 0,2—0,65.

Номинальный коэффициент мощности асинхронных двигателей, равный отношению активной мощности к полной мощности, потреб­ляемой из сети,

также возрастает с ростом мощности и частоты вращения двига­телей; при мощности более 1 кВт он составляет 0,7—0,9; в микро­двигателях 0,3—0,7.

    ОБЩИЕ СВЕДЕНИЯ О РЕЖИМАХ РАБОТЫ АСИНХРОННОГО ДВИГАТЕЛЯ.

В двигательном режиме разница частот вращения ротора и поля статора в большинстве случаев невелика и составляет лишь несколь­ко процентов. Поэтому частоту вращения ротора оценивают не в абсолютных единицах (об/мин или об/с), а в относительных, вводя понятие скольжения:

s = (п> - п)/п>,

где п> — частота вращения поля (синхронная частота вращения); п — частота вращения ротора.

Скольжение выражается либо в относительных единицах (s = = 0,02; 0,025 и т. п.), либо в процентах (s - 2 %; 2,5 % и т. п.).

Частота тока и ЭДС, наводимая в проводниках обмотки ротора, зависят от частоты тока и ЭДС обмотки статора и от скольжения:

f>2> - f>1>s; Е'>2> - E>1>s,

где Е>1>— ЭДС обмотки статора; Е'>2> — ЭДС обмотки ротора, приве­денная к числу витков обмотки статора.

Теоретически асинхронная машина может работать в диапазоне изменения скольжения s = -∞...+∞ (рис. 2.1),

Рис. 2.1. Механическая характеристи­ка

асинхронной машины

но не при s = 0, так как в этом случае п - п> и проводники обмотки ротора неподвижны отно­сительно поля статора, ЭДС и ток в обмотке равны нулю и момент отсутствует. В зависимости от практически возможных скольже­ний различают несколько режи­мов работы асинхронных машин (рис. 2.1): генераторный режим при s < 0, двигательный при 0 < s < 1, трансформаторный при s = 1 и тормозной при s > 1. В ге­нераторном режиме ротор маши­ны вращается в ту же сторону, что и поле статора, но с большей частотой. В двигательном — направления вращения поля статора и ро­тора совпадают, но ротор вращается медленнее поля статора: п = п>(1 - s). В трансформаторном режиме ротор машины неподвижен и обмотки ротора и статора не перемещаются относительно друг дру­га. Асинхронная машина в таком режиме представляет собой транс­форматор и отличается от него расположением первичной и вторич­ной обмоток (обмотки статора и ротора) и наличием воздушного зазора в магнитопроводе. В тормозном режиме ротор вращается, но направление его вращения противоположно направлению поля ста­тора и машина создает момент, противоположный моменту, действу­ющему на вал. Подавляющее большинство асинхронных машин используют в качестве двигателей, и лишь очень небольшое количе­ство — в генераторном и трансформаторном режимах, в тормозном режиме — кратковременно.

Для оценки механической характеристики асинхронного двига­теля моменты, развиваемые двигателем при различных скольжени­ях, обычно выражают не в абсолютных, а в относительных едини­цах, т. е. указывают кратность по отношению к номинальному моменту: М* = M>ном>. Зависимость М* = f(s) асинхронного двига­теля (рис. 2.2) имеет несколько характерных точек, соответствую­щих пусковому М*>п>, минимальному М*>min>, максимальному М*>max> и но­минальному М*>ном> моментам.

Пусковой момент М*>п> характеризует начальный момент, развивае­мый двигателем непосредственно при включении его в сеть при непо­движном роторе (s - 1). После трогания двигателя с места его момент несколько уменьшается по сравнению с пусковым (см. рис. 2.2). Обычно М*>min> на 10...15 % меньше М*>п>. Большинство двигателей проектируют так, чтобы их М*>min> был больше М*>ном> , так как они могут достигнуть но­минальной скорости лишь при условии, что момент сопротивления, приложенный к валу, будет меньше, чем М*>min>> >.

Максимальный момент М*>max> характеризует перегрузочную спо­собность двигателя. Если момент сопротивления превышает М*>max>, двигатель останавливается. Поэтому М*>max> называют также критиче­ским, а скольжение, при котором момент достигает максимума, — критическим скольжением s>>p>. Обычно s>кр> не превышает 0,1...0,15; в двигателях с повышенным скольжением (крановых, металлургиче­ских и т. п.) s>>p> может быть значительно большим.

В диапазоне 0 < s < s>кр> характеристика М - f(s) имеет устойчи­вый характер. Она является рабочей частью механической характе­ристики двигателя. При скольжениях s > s>кр> двигатель в нормаль­ных условиях работать не может. Эта часть характеристики определяет пусковые свойства двигателя от момента пуска до выхо­да на рабочую часть характеристики.

Трансформаторный режим, т. е. режим, когда обмотка статора подключена

к сети, а ротор неподвижен, называют также режимом

Рис. 2.2. Зависимость тока и момента

асинхронного двигателя от скольжения

короткого замыкания двигателя. При s = 1 ток двигателя в несколь­ко раз превышает номинальный, а охлаждение много хуже, чем при номинальном режиме. Поэтому в режиме короткого замыкания асинхронный двигатель, не рассчитанный для работы при скольже­ниях, близких к единице, может находиться лишь в течение нескольких секунд.

Режим короткого замыкания возникает при каждом пуске двигателя, однако в этом случае он кратковременен. Несколько пусков двигателя с короткозамкнутым ротором подряд или через короткие промежутки времени могут привести к превышению до­пустимой температуры его обмоток и к выходу двигателя из строя.

3. АНАЛИТИЧЕСКОЕ И ГРАФИЧЕСКОЕ ОПРЕДЕЛЕНИЕ РЕЖИМОВ РАБОТЫ АСИНХРОННОЙ МАШИНЫ

Электромеханическое преобразование энергии может происхо­дить в асинхронной машине в следующих трех режимах:

в режиме двигателя 0 < s < l, Ω>1> > Ω > 0;

в режиме генератора s < 0, Ω > Ω>1>;

в режиме тормоза s > 1, Ω < 0.

Кроме того, важны еще два характерных режима работы, в ко­торых электромеханическое преобразование энергии не происходит: режим идеального холостого хода (s = 0, Ω = Ω>1>) и режим корот­кого замыкания (s = 1, Ω = 0).

В режиме двигателя (область Д на рис. 3.2) под воздействием электромагнитного момента Μ > 0, направленного в сторону поля, ротор машины вращается в сторону поля со скоростью, мень­шей, чем скорость поля (Ω>1> > Ω > 0, 0 < s < 1). В этом режиме

Ρ>эм> = ΜΩ>1> = > 0; Ρ>мех> = ΜΩ = Ρ>э2 > > 0.

Электрическая мощность Р>1> = Р>эм> + Р> + Р>э1> > 0 преобра­зуется в механическую мощность Р>2> = Р>мех> Ρ> Ρ>> >> 0, пере­даваемую через вал приводимой в движение машины.

Энергетические процессы в режиме двигателя иллюстрируются рис. 3.1, а, на котором направление активной составляющей тока ротора i>2а> совпадает с индуктированной в роторе ЭДС. Направление электромагнитного момента Μ определяется электромагнитной силой B>m>i>2>>a>, действующей на ток i>2>>a> .

Полезная механическая мощность Р>2> оказывается меньше по­требляемой из сети мощности на потери ΣΡ:

Ρ>2> = Ρ>1>-ΣΡ = Ρ>1> -(Ρ>>1> + Ρ>>>2> + Ρ> + Ρ>),

И КПД двигателя выражается формулой:

η = = 1- = f(s)

В режиме генератора (область Г на рис. 3.2) под воздействием внешнего момента М> > 0, направленного в сторону поля (рис. 3.1, б), ротор машины вращается со скоростью, превышаю­щей скорость поля (Ω > Ω>1>, s < 0). В этом режиме в связи с изме­нением направления вращения поля (Ω^) относительно ротора активная составляющая тока ротора г'>2а> изменяет свое направление иа обратное (по сравнению с двигательным режимом). Поэтому электромагнитный момент Μ = B>m>i>2>>a>, уравновешивающий внешний момент, направлен против поля и считается отрицательным < 0), мощности Р>„ и Р>тх> также отрицательны:

Ρ>эм> = ΜΩ>1> = < 0; Ρ>мех> = ΜΩ = Ρ>э2 > < 0.



Рис. 3.1. Режимы работы асинхронной машины.

а — двигательный;

б — генераторный;

в — тормоза;

г — трансформатора (или короткого замыкания).

Направление преобразования энергии изменяется на обратное: механическая мощность Р>г>, подведенная к валу машины, преоб­разуется в электрическую мощность P>lt> поступающую в сеть. Поскольку мощность потерь всегда положительна (в любом режиме работы эти мощности превращаются в тепло), механическая мощность:

Ρ>мех> = Ρ>эм> - Ρ>э2 >< 0 при s < 0

по абсолютному значению больше, чем электромагнитная (рис. 3.2):

|Ρ>мех>| = | Ρ>эм >| + Ρ>э2>

Рис. 3.2. Электромеханические характеристики асинхронной машины (в отно­сительных единицах при 1/> = 1; />0> = 0,364; cos <р>0> = 0,185; Х>г> = Х'>2> = 0,125; К>г> = 0,0375; R'>s> = 0,0425).

По той же причине потребляемая механическая мощность

P>2> = P>1> - ΣΡ < 0

по абсолютному значению на потери больше электрической мощнос­ти, отдаваемой в сеть:

|Ρ>2>| = | Ρ>1 >| + ΣΡ,

и КПД генератора

η = = 1-.

В режиме тормоза (область Т на рис. 3.2) под воздействием внешнего момента М> < 0, направленного против вращения поля (рис. 3.1, в), ротор машины вращается в сторону, противоположную полю (Ω<0, s = >1). В этом режиме электромагнитный момент М, уравновешивающий внешний момент, как и в режиме двигателя (направление вращения поля Ω.>5> относительно ротора остается таким же, как в режиме двигателя), направлен в сторону поля и считается положительным (М > 0). Однако, поскольку Ω < 0, механическая мощность оказывается отрицательной:

Ρ>мех> = ΜΩ = Ρ>э2 > < 0

Это означает, что она подводится к асинхронной машине. Электро­магнитная мощность в этом режиме положительна:

Ρ>эм> = ΜΩ>1> = > 0

Это означает, что она поступает из сети в машину.

Подведенные к ротору машины со стороны сети |Ρ>эм>| и вала |Ρ>мех>| мощности превращаются в электрические потери Р>э2> в сопро­тивлении ротора R'>2> (рис. 3.2):

|Ρ>мех>| + | Ρ>эм >| = Ρ>э2 > + Ρ>э2> = Ρ>э2 >= m>1> R'>2>(I '>2>)2 .

Асинхронная машина в этом режиме может быть использована для притормаживания опускаемого подъемным краном груза. При этом мощность | Ρ>мех >| = | ΜΩ | поступает в ротор машины (см. рис. 3.1).

В режиме идеального холостого хода внешний вращающий мо­мент Μ>, момент трения Μ> = Ρ>/Ω и момент, связанный с добавоч­ными потерями, М> = Ρ>/Ω равны нулю. Ротор вращается со ско­ростью поля (Ω = Ω>1>, s = 0) и не развивает полезной механической мощности = 0, Р>мех> = ΜΩ = 0).

В режиме идеального холостого хода внешний момент, прило­женный к валу машины, равен нулю (М>= 0). Считается также, что отсутствует момент от трения вращающихся частей. Ротор машины вращается с той же угловой скоростью, что и вращающееся поле (Ω = Ω>1>), скольжение равно нулю (s = 0); ЭДС и токи в обмотке ротора не индуктируются (I>2>=0), и электромагнитный момент, уравновешивающий внешний момент и момент сил трения, равен нулю (М = 0).

Режим холостого хода асинхронной машины аналогичен ре­жиму холостого хода трансформатора. В асинхрон­ной машине и в трансформаторе ток в этом режиме имеется только в первичной обмотке I>1 >≠ 0, а во вторичной — отсутствует (I>2> = 0); в машине и в трансформаторе магнитное поле образуется в этом режиме только первичным током, что позволяет называть ток хо­лостого хода намагничивающим током (I>1> = I>0>). В отличие от транс­форматора система токов I>0> в фазах многофазной обмотки статора образует вращающееся магнитное поле.

По аналогии с трансформатором уравнение напряжений необ­ходимо составить при холостом ходе только для фазы обмотки статора, являющейся первичной обмоткой:

,

где — ЭДС, индуктированная в фазе вращающимся магнитным полем с потоком Ф>га>;

— фазное напряжение первичной сети;

R>1>, Х>1> — активное и индуктивное сопротивления рассеяния фазы первичной обмотки (см. далее).

В силу малости падений напряжений X>1>I>0> и R>1>I>0> напряжение почти полностью уравновешивается ЭДС т. е. = -.

В режиме холостого хода R'>мех> = R'>2> = ∞, ток R'>2> = 0 и схема замещения содержит только одну ветвь Z>1> + Z>0> (Т-образная и Г-образная схемы не отличаются друг от друга).

В режиме короткого замыкания под действием внешнего момента Μ >, уравновешивающего электромагнитный момент М, ротор удер­живается в неподвижном состоянии (Ω = 0, s = = 1) и не совершает полезной механической работы (Р>мех> = Μ Ω = 0).

Направление тока i>2a> и электромагнитного момента Μ остается таким же, как в режиме двигателя, и Μ > 0 (см. рис. 3.1, г). Электромагнитная мощность Р>эм> = ΜΩ>1> > 0 — она поступает в ротор из статора и превращается в электрические потери (Р>эм> = = Р>э2>). В этом режиме асинхронная машина работает как коротко-замкнутый со вторичной стороны трансформатор, отличаясь от него только тем, что в ней существует вращающееся поле взаимной индукции вместо пульсирующего поля в трансформаторе.

В режиме короткого замыкания R'>мех> = R'>2> = 0 и сопро­тивление схемы замещения по рис. 42-3 определяется параллельно включенными сопротивлениями Z>1> + Z>0> и Z>1> + Z'>2>. Имея в виду, что |Z>1> + Z'>2>| « |Z>1> + Z>0>|, можно отбросить ветвь Z>1> + Z>0> и считать сопротивление схемы замещения при коротком замыкании равным

Z> = Z>1> + Z'>2> = R> + jX> (43-3)

где

R>= R>1>+ R'>2>

Если к неподвижному ротору асинхронной машины подключить симметричную систему дополнительных сопротивлений R>2д> + jХ>2д>, то она будет работать как трансформатор, преобразующий электрическую энергию, поступающую из первичной сети, в электрическую энергию с другими параметрами, потребля­емую дополнительными сопротивлениями R>2д> + jХ>2д>. Поэтому режим при s = 1 называется также режимом трансформатора.

Изменить режим работы асинхронной машины или скольжение машины в данном режиме (при U>1> = const и f>1> = const) можно только путем изменения внешнего момента М>, приложенного к валу машины. При М> = 0 ротор вращается со скоростью поля (Ω = Ω>1>, s = 0) и машина не совершает полезного преобразования энергии. При воздействии на вал ротора внешнего момента М>, направленного против направления вращения поля, скорость ротора уменьшается до тех пор, пока не появится электромагнитный момент Μ = f(s), который уравновесит момент М>. Машина переходит в режим двигателя s = > 0. Наоборот, при воздействии внешнего момента М> направленного по вращению поля, скорость ротора делается большей, чем скорость поля (Ω > Ω>1>), и машина переходит в режим генератора (s=<0).

Наконец, к режиму тормоза можно перейти из режима двигателя, изменяя внешний момент М> таким образом, чтобы ротор сначала остановился, а затем пришел во вращение в противоположную сторону (по отношению к полю).

4. ЛИТЕРАТУРА.

    Иванов-Смоленский А. В. Электрические машины: Учебник для вузов. – М.: Энергия, 1980. – 928 с., ил.

    Вольдек А. И. Электричесие машины. Учебник для студентов высших учебн. Заведений. Л., «Энергия», 1974.

    Проектирование электрических машин: Учеб. Для вузов / Под ред. И. П. Копылова. М.: Высш. Шк., 2002. – 757 с.: ил.