Проектирование редуктора (работа 2)

Содержание

Введение

1Пояснительная записка

Назначение и выбор конструкции редуктора

Выбор сорта масла

Выбор посадок

Сборка редуктора

2 Расчетная часть проекта

Исходные данные для проектирования

Содержание расчета

Выбор электродвигателя и кинематический расчет

Расчет редуктор

Предварительный расчет валов редуктора

Конструктивные размеры шестерни и колеса

Конструктивные размеры корпуса редуктора

Расчет открытой передачи

Проверка долговечности подшипников

Проверка прочности шпоночных соединений

Уточнённый расчет валов

Список используемой литературы

Введение

В современное время развитие народного хозяйства зависит от машиностроения. Для современного машиностроения характерно:

• Повышение требований к техническому уровню

• Повышение требований к качеству и надежности

• Увеличение сроков долговечности техники

Основные требования, предъявляемые к создаваемой машине:

• Высокая производительность

• Надежность

• Технологичность

• Ремонтопригодность

• Минимальные габариты и масса

• Удобство эксплуатации

• Экономичность

• Техническая эстетика

Все эти требования учитывают в процессе проектирования.

При расчетах, конструировании и изготовлении машин должны строго соблюдаться государственные стандарты (ГОСТы), отраслевые стандарты(ОСТы), стандарты предприятий(СТП).Основы надежности закладываются при проектировании изделия, при выборе оптимальных вариантов конструкции. В данном курсовом проекте сконструирован привод подвесного конвейера.

Привод состоит из цилиндрического редуктора и конической передачи. В пояснительной записке выполнены геометрические и прочностные расчеты механических передач, валов, подобраны подшипники, выполнен их расчет на долговечность. В графической части курсового проекта выполнен сборочный чертеж редуктора, рабочие чертежи ведомого вала и зубчатого колеса.

1. ПОЯСНИТЕЛЬАЯ ЗАПИСКА

1.1 Назначение и выбор конструкции редуктора

Редуктором называют механизм, выполненный в виде самостоятельного агрегата с целью понижения частоты вращения ведомого вала и увеличения вращающего момента на ведомом валу. Редуктор состоит из зубчатых или червячных колес, валов, подшипников, крышек подшипников, корпуса и др.

Редукторы широко применяют в приводах различных рабочих машин в разных отраслях машиностроения. Соединение редуктора с двигателем осуществляется с помощью муфты или ременных и цепных передач. Редукторы классифицируют по типам, типоразмерам и исполнениям.

Тип редуктора определяют– по виду применяемых зубчатых передач и порядку их размещения в направлении от быстроходного вала к тихоходному, по числу ступеней передачи и по расположению геометрической оси тихоходного вала в пространстве.

Редукторы бывают цилиндрические, конические, коническо – цилиндрические, червячные, червячно – цилиндрические, цилиндрическо – червячные, планетарные, волновые и т.д.

По числу ступеней передач различают редукторы одноступенчатые, двухступенчатые, трехступенчатые.

По расположению геометрической оси тихоходного вала в пространстве различают редукторы: горизонтальные и вертикальные.

Типоразмер редуктора определяет тип и главный размер тихоходной ступени для цилиндрических и червячных передач главным параметром является межосевое расстояние, конической – внешний делительный диаметр. Другими параметрами зубчатых редукторов являются коэффициент ширины зубчатых колес, модули зубчатых колес, углы наклона зубьев, а для червячных редукторов дополнительно коэффициент диаметра червяка.

Исполнение редуктора определяют передаточное число, вариант сборки, форма концевых участков валов. Основная энергетическая характеристика редуктора – номинальный вращающий момент на тихоходном валу.

Цилиндрические редукторы применяют для передачи движения между валами, оси которых параллельны.

Наиболее распространены вертикальные и горизонтальные цилиндрические ре-дукторы с прямыми и шевронными зубьями.

Максимальное передаточное число одноступенчатого цилиндрического редуктора по ГОСТу равно 12,5. Высота одноступенчатого редуктора с таким или близким к нему передаточным числом больше, чем двухступенчатого с тем же значением. По-этому практически редукторы с передаточным числом, близким к максимальному, применяют редко, ограничиваясь 6.

Выбор горизонтальной и вертикальной схемы для редукторов всех типов обу-словлен удобством общей компоновки привода.

1.2 Выбор сорта масел

Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до погружения колеса на всю длину зуба.

Контактное напряжение и средняя окружная скорость колес

σн=487,13 МПа

υ=0,62 м/с

Кинематическая вязкость приблизительно равна 40*10-6 м/с (1.табл.10.8).

Принимаем масло индустриальное И-40А (1.табл.10.10).

Подшипники смазываем пластичным смазочным материалом, закладываемым в подшипниковые камеры при монтаже.

Принимаем солидол марки УС-2(1.табл.9.14)

Объем заливаемого масла вычисляем по формуле

Vм=0,6*Pтр.

Vм=0,5*3,3=1,65 дм3=1,65 л

Уровень масла hм, мм, вычисляем по формуле

hм= Vм/(a*b),

где a,b–размеры рабочей камеры, м;

a=2,8 дм3 (по построению);

b=1,3 дм3 (по построению).

hм= 1,65/(2,8*1,3)=0,45 дм=45 мм

1.3 Выбор посадок

Посадка шестерни и колеса на вал H7/t6 (ГОСТ 25347–82).

Посадка муфты на вал редуктора H7/p6 (ГОСТ 25347–82).

Шейки валов под подшипники выполняем с отклонением вала k6. Отклонения отверстий в корпусе под наружные кольца по H7 (ГОСТ 25347–82).

Следующие посадки принимаем, пользуясь справочными данными:

Шейки валов под войлочные уплотнения выполняем с отклонением вала h8.

      Сборка редуктора

Перед сборкой внутреннюю полость редуктора тщательно очищают и покрывают маслостойкой краской.

Сборку производят в соответствии со сборочным чертежом редуктора, начиная с узлов валов:

В ведущий вал закладывают шпонку и напрессовывают шестерню до упора в бурт; на вал надевают кольца, маслоотражатели и напрессовывают шарикоподшипники, нагретые масле; в камеры вставляют распорные кольца.

Аналогично монтируют ведомый вал.

На корпус центруют крышку редуктора штифтами.

Заворачивают подшипниковые крышки и закладывают войлочное уплотнение.

Проверяют провинчиванием валов отсутствие заклинивания подшипников (валы должны поворачиваться от руки) и закрепляют подшипниковые крышки с войлочным уплотнением болтами, крепят крышку редуктора.

Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель.

Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой из технического картона.

Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, установленной техническими условиями.

2. РАСЧЕТНАЯ ЧАСТЬ ПРОЕКТА

2.1 Исходные данные для проектирования

Рисунок 1– Привод к подвесному конвейеру

1–двигатель; 2–МУВЗ; 3–цилиндрический редуктор; 4–коническая передача; 5–ведущие звездочки конвейера; 6–тяговая цепь.

I,II,III,IV– валы, соответственно,– двигателя, быстроходный и тихоходный редуктора, рабочей машины.

Таблица 1–Исходные данные

Исходные данные

Значения величин

Тяговая сила цепи F, кН

5,5

Скорость грузовой цепи υ, м/с

0,55

Шаг грузовой цепи p, мм

80

Число зубьев звездочки z

9

Допускаемое отклонение скорости грузовой цепи δ, %

3

Срок службы привода L, лет

6

2.2 СОДЕРЖАНИЕ РАСЧЕТА

2.2.1 Выбор электродвигателя и кинематический расчет

Общий КПД привода η вычисляют по формуле

η = η1* η2* (η3)2* η4 ,

где η1- КПД цилиндрического редуктора ,η1=0,98 (1.табл. 1.1.);

η2- КПД конической передачи, η2=0,97 (1.табл. 1.1.);

η3- КПД, учитывающий потери пары подшипников качения, η3=0,99

(1.табл. 1.1.);

η4- КПД, учитывающий потери в опорах вала подвесного конвейера, η4=0,99 (1.табл. 1.1.).

η=0,98*0,97*(0,99)2*0,99=0,92

Мощность на валу подвесного конвейера P, кВт, вычисляют по формуле

P=F*υ ,

где F -тяговая сила цепи, F=5,5 кH;

υ -скорость тяговой цепи, υ=0,55 м/с.

P=5,5*0,55=3,025 кВт

Требуемую мощность электродвигателя Pтр., кВт, вычисляют по формуле

Pтр. =P/ η

Pтр.=3,025/0,92=3,3 кВт

Частоту вращения вала подвесного конвейера n3, об/мин, вычисляют по формуле

n3=(60*103*υ)/(z*p) ,

где p- шаг грузовой цепи, p=80*10-3м;

z- число зубьев, z = 9.

n3=(60*103*0,55)/(9*80)=45,8 об/мин

Угловую скорость ω3, рад/с, вычисляют по формуле

ω3=π* n3/30

ω3=3,14*45,8/30=4,8 рад/с

Выбираем электродвигатель 4А112MВ6У2

Pдв. = 4,0 кВт

nдв. =1000 об/мин (1.табл. П1)

s = 5,1%

dдв.= 32 мм (1.табл.П2)

Номинальную частоту вращения электродвигателя nдв., об/мин, вычисляют по формуле

nдв. =n-s

nдв. =1000-51=949 об/мин

Угловую скорость электродвигателя ωдв., рад/с, вычисляют по формуле

ωдв.= π* nдв. /30

ωдв.=3,14*949/30=99,3 рад/с

Общее передаточное отношение i вычисляют по формуле

i = ωдв. /ω3

i =99,3/4,8=20,68

Принимаем iред,= 4 (1.стр.36).

Передаточное число открытой передачи iо.п. вычисляют по формуле

iо.п. = i / iред,

iо.п. =20,68/4≈5

Таблица 2 – Частоты вращений и угловые скорости валов редуктора и вала подвесного конвейера

Вал A n1=nдв.=949 об/мин ω1=ωдв.=99,3рад/с

Вал B n2=n1/ iо.п.=237,3 об/мин ω2= ω1/ iо.п.=24,83 рад/с

Вал C n3=47,5 об/мин ω3=4,8 рад/с

Вращающий момент на валу шестерни T1, H*м , вычисляют по формуле

T1=Pтр./ ω1

T1=3300/99,3=33,2 H*м

Вращающий момент на валу колесаT2,H*м, вычисляют по формуле

T2=T1* iред

T2=33,2*4=132,8 H*м

Вращающий момент на валу колеса конической передачи T3,H*м, вычисляют по формуле

T3=T2* iо.п.

T3=135,9*5=664 H*м

2.2.2 Расчет редуктора

Принимаю для шестерни 40ХН, термическая обработка-улучшение,

твердость HB 280.

Принимаю для колеса 40ХН, термическая обработка-улучшение, твердость

HB 250.

Допускаемое контактное напряжение [σн], МПа, вычисляют по формуле

[σн]= σн lim b*KHL/[SH] ,

где σн lim b=2HB+70-предел контактной выносливости при базовом числе циклов;

KHL-коэффициент долговечности, KHL=1;

SH- коэффициент безопасности, SH=1,1.

Допускаемое напряжение для шестерни [σн1], МПа, вычисляют по формуле

[σн1]= (2*HB1+70)*KHL/[SH]

[σн1]=(2*280+70)*1/1,1=572 МПа

Допускаемое напряжение для колеса [σн2], МПа, вычисляют по формуле

[σн1]= (2*HB2+70)*KHL/[SH]

[σн1]=(2*250+70)*1/1,1=518 МПа

Допускаемое контактное напряжение [σн], МПа, вычисляют по формуле

[σн]=0,45*([σн1]+ [σн2])

[σн]=0,45*(572+518)=491 МПа

Межосевое расстояние aω, мм, вычисляют по формуле

aω=Kа*(iред.+1)*3√((T2*KHβ)/( [σн]2*(iред.)2*ψba)),

где Kа–коэффициент для прямозубой передачи, Kа=49,5;

iред.–передаточное число редуктора, iред.=4;

T2–вращающий момент на ведомом валу, T3=132,8 Н*м;

KHβ–коэффициент учитывающий неравномерность распределения на-грузки

по ширине венца, KHβ=1;

[σн] – допускаемое напряжение для материала колес, [σн]=491 МПа;

ψba–коэффициент ширины венца по межосевому расстоянию, ψba=0,25.

aω=49,5*(4+1)*3√((132,8*1*103)/( 4912*42*0,25))=127,8 мм

Принимаю aω=125 мм (1.ст.36)

Нормальный модуль зацепления mn, мм, вычисляют по формуле

mn=(0,01÷0,02)* aω

mn=(0,01÷0,02)*125=(1,25÷2,5) мм

Принимаю mn=2 мм ( 1.ст.36)

Число зубьев шестерни z1 вычисляют по формуле

z1=(2* aω)/ ((iред.+1)*mn)

z1=(2*125)/(5*2)=25

Принимаю z1=25

Число зубьев колеса z2 вычисляют по формуле

z2= z1* iред.

z2=25*4=100

Принимаю z2=100

Уточняю

iред.= z2/ z1

iред.=100/25=4

Делительные диаметры d1,d2, мм, вычисляют по формуле

d1=mn* z1

d2=mn* z2

d1=2*25=50 мм

d2=2*100=200 мм

Проверка

aω=( d1+ d2)/2

aω=(50+200)/2=125 мм

Диаметры вершин зубьев da1, da2, мм, вычисляют по формуле

da1= d1+2*mn

da2= d2+2*mn

da1=50+4=54 мм

da2=200+4=204 мм

Диаметр впадин зубьев df1, df2, вычисляют по формуле

df1= d1-2,5*m

df2= d2-2,5*m

df1= 50-2,5*2=45 мм

df2= 200-2,5*2=195 мм

Ширину колеса b2, мм, вычисляют по формуле

b2= ψba* aω

b2=0,25*125≈32 мм

Ширину шестерни b1, мм, вычисляют по формуле

b1= b2+5

b1=32+5=37 мм

Коэффициент ширины шестерни по диаметру ψbd вычисляют по формуле

ψbd=b1/d1

ψbd=37/50=0,74

Окружную скорость колёс υ, м/с, вычисляют по формуле

υ=ω2*d1/2

υ=24,83*50*10-3/2=0,62 м/с

Принимаю 8-ую степень точности (1.ст.32)

Контактное напряжение σн, МПа, вычисляют по формуле

σн=(310/ aω)*√(T2*KH*(iред.+1)3)/(b2*(iред.)2)≤ [σн],

где KH= KHα* KHβ* KHυ–коэффициент нагрузки,

где KHα–коэффициент, учитывающий неравномерность распределения

нагрузки между зубьями, KHα=1,06 (1.табл.3.4)

KHβ–коэффициент, учитывающий неравномерность распределения

нагрузки по ширине венца, KHβ=1,025 (1.табл.3.5)

KHυ–динамический коэффициент, KHυ=1,11.табл.3.6)

KH=1,06*1,025*1,1=1,19

σн=(310/ 125)*√(132,8*1,19*(4+1)3*103)/(32*(4)2) ≤ [σн]=491 МПа

σн=487,13 МПА< [σн]=491МПа

Условие прочности выполнено

Окружную силу Ft, H, вычисляют по формуле

Ft=2*T1/d1

Ft=2*33,2*103/50=1328 H

Радиальную силу Fr, H, вычисляют по формуле

Fr= Ft*tgα,

где α–угол зацепления, α=20о

Fr=1328*tg20о=483 H

Напряжение изгиба σf, МПа, вычисляют по формуле

σf=( Ft*Kf*Yf* Yβ* Kfα)/(b*mn)≤ [σf],

где Kf= Kfβ* Kfυ–коэффициент нагрузки,

где Kfβ–коэффициент, учитывающий неравномерность распределения

нагрузки по длине зуба, Kfβ=1,065 (1.табл.3.7)

Kfυ–динамический коэффициент, Kfυ=1,2 (1.табл.3.8)

Kf=1,065*1,2=1,23

Yf1– коэффициент формы зуба шестерни, Yf1=3,61(1.стр.42)

Yf2– коэффициент формы зуба колеса, Yf2=3,60(1.стр.42)

Kfα– коэффициент, учитывающий неравномерность распределения

нагрузки между зубьями, Kfα=0,92

σf2=( Ft*Kf*Yf2* Kfα)/(b2*mn)≤ [σf]

σf2= (1328*1,23*3,60*0,92)/(32*2)=84,5 МПа< [σf]=206 МПа

Условие прочности выполнено

2.2.3 Предварительный расчет валов редуктора

Ведущий вал

Диаметр выходного конца dв1,мм, вычисляем по формуле

dв1=3√ (16*Tk1)/(π*[τk]),

где Tk1 –вращающий момент на валу, Tk1=135,9 Н*м;

[τk]–допускаемое напряжение на кручение, [τk]=25 МПа.

dв1=3√(16*33,2*103/3,14*25=18,9 мм

Принимаем dв1=30 мм

Принимаем диаметр под подшипниками dп1=35 мм

Ведомый вал

Диаметр выходного конца dв2,мм, вычисляем по формуле

dв2=3√ (16*Tk2)/(π*[τk])

dв2=3√ (16*132,8*103)/(3,14*25)=30 мм

Принимаем dв2=35 мм

Принимаем диаметр под подшипниками dп2=40 мм

Принимаем диаметр под колесом dк2=45 мм

2.2.4 Конструктивные размеры шестерни и колеса

Шестерня

Шестерню выполняем за одно целое с валом

Делительный диаметр шестерни d1=50 мм

Внешний диаметр шестерни da1=54 мм

Ширина шестерни b1=37 мм

Колесо

Делительный диаметр колеса d2=200 мм

Внешний диаметр колеса da2=204 мм

Ширина венца b2=32 мм

Диаметр ступицы колеса dст, мм, вычисляем по формуле

dст≈1,6*dк2

dст≈1,6*60=96 мм

Принимаем dст=96 мм

Длину ступицы колеса lст, мм, вычисляем по формуле

lст≈(1,2÷1,5)* dк2

lст≈(1,2÷1,5)*40=(48÷60) мм

Принимаем lст=60 мм

Толщину обода колеса δ0, мм, вычисляем по формуле

δ0=(2,5÷4)*mn

δ0=(2,5÷4)*2=5÷8 мм

Принимаем δ0=8 мм

Толщину диска C, мм, вычисляем по формуле

C=0,3* b2

C=0,3*32=9,6 мм

Принимаем С=10 мм

2.2.5 Конструктивные размеры корпуса редуктора

Толщину стенок корпуса и крышки δ, δ1,мм, вычисляем по формулам:

δ=0,04*aω+2

δ1=0,032*aω+2

δ=0,04*250+1=12мм

δ1=0,032*250+1=10 мм

Принимаем δ= 12мм

δ1=10 мм

Толщину верхнего пояса корпуса и крышки b, b1,мм, вычисляем по формуле

b=b1=1,5* δ

b=b1=1,5*12=18 мм

Толщину нижнего пояса p, мм, вычисляем по формуле

p=1,5* δ

p=1,5*12=18 мм

р2=(2,25÷2,27) δ

р2=(2,25÷2,27)12=15÷33мм

Принимаем p2=30 мм

Диаметр фундаментных болтов d1, мм, вычисляем по формуле

d1=(0,03÷0,036)*aω+12

d1=(0,03÷0,036)*250+12=19,5÷21 мм

принимаю : d1=20мм

Принимаем фундаментные болты с резьбой М20

Диаметр болтов, крепящих крышку к корпусу у подшипника, d2, мм, вычисляем по формуле

d2=16мм

d3=12мм

2.2.6. Расчет открытой передачи

Принимаем для шестерни сталь 40Х, термическая обработка-улучшение,

твердость HB 270.

Принимаем для колеса сталь 40Х, термическая обработка-улучшение, твер-дость HB 245.

Допускаемое контактное напряжение [σн], МПа, вычисляют по формуле

[σн]= σн lim b*KHL/[SH] ,

где σн lim b=2HB+70-предел контактной выносливости при базовом числе цик¬лов;

KHL-коэффициент долговечности, KHL=1;

SH- коэффициент безопасности, [SH]=1,15.

[σн]= 560*1/1,15=487 МПа

Внешний делительный диаметр колеса de2, мм, вычисляют по формуле

de2=Kd*3√(T3*KHβ*i)/([σH]2*(1-0,5*ψbRe)2* ψbRe) ,

где Kd–для колес с прямыми зубьями, Kd=99;

T3–вращающий момент на ведомом валу, T3=664 Н*м;

KHβ–коэффициент, учитывающий неравномерность распределения нагрузки

по ширине венца, KHβ=1,35(1.табл.3.1.);

i–передаточное число редуктора, i=4;

[σH]–допускаемое напряжение для материала колес, [σH]=487 МПа;

ψbRe–коэффициент ширины венца по отношению к внешнему конусному

расстоянию, ψbRe=0,285.

de2=99*3√(664*1,35*5*103)/(4872*(1-0,5*0,285)2*0,285)=444 мм

Принимаем de2=450мм (1.ст.49)

Число зубьев шестерни z1=25

Число зубьев колеса z2 вычисляют по формуле

z2= z1* i

z2=25*5=125

Внешний окружной модуль me, мм, вычисляют по формуле

me= de2/ z2

me=450/125=3,6

Уточняем значение de2

de2= me* z2

de2=3,6*125=450 мм

Углы делительных конусов δ1, δ2, в градусах, вычисляют по формулам

ctg δ1=i

ctg δ1=5

δ1=11,3o

δ2=90o- δ1

δ2=90o-14,04o=78,7o

Внешнее конусное расстояние Re, мм, вычисляют по формуле

Re=0,5* me*√ (z12+ z22)

Re=0,5* 3,6*√ (252+ 1252)=229,5 мм

Ширину венца b, мм, вычисляют по формуле

b= ψbRe* Re

b=0,285*229,5≈65,4 мм

Внешний делительный диаметр шестерни, de1, мм, вычисляют по формуле

de1= me* z1

de1=3,6*25=900 мм

Средний делительный диаметр шестерни d1, мм, вычисляют по формуле

d1=2*( Re-0,5*b)*sin δ1

d1=2*( 229,5-0,5*65,4)*sin (11,3o)=77,12 мм

Внешний диаметр колеса dae2, мм, вычисляют по формуле

dae2= de2+2* me*cos δ2

dae2= 450+2* 3,6*cos (78,7º)=452 мм

Средний окружной модуль m, мм, вычисляют по формуле

m= d1/ z1

m=77,12/25=3,08 мм

Коэффициент ширины шестерни по среднему диаметру ψbd, вычисляют по формуле

ψbd=b/d1

ψbd=65,4/77,12=0,85

Среднюю окружную скорость колёс υ, м/с, вычисляют по формуле

υ=ω1*d1/2

υ=99,4*77,12/2000=3,83 м/с

Принимаем 7-ую степень точности.

Контактное напряжение σн, МПа, вычисляют по формуле

σн=(335/( Re-0,5*b) )*√(T3*KH*√(i2+1)3)/(b*i2)≤ [σн],

где KH= KHα* KHβ* KHυ–коэффициент нагрузки,

где KHα–коэффициент, учитывающий неравномерность распределения

нагрузки между зубьями, KHα=1 (1.табл.3.4)

KHβ–коэффициент, учитывающий неравномерность распределения

нагрузки по ширине венца, KHβ=1,27 (1.табл.3.5)

KHυ–динамический коэффициент, KHυ=1 (1.табл.3.6)

KH=1*1*1,27=1,27

σн=(335/ 196,8)*√(664*1,27*√(52+1)3*103)/(65,4*(5)2) ≤ [σн]=487 МПа

σн=445,1 МПА< [σн]=487 МПа

Условие прочности выполнено

Окружную силу Ft, H, вычисляют по формуле

Ft=2*T2/d1=2*T2* cos βn /( mn* z1)

Ft=2*132,8*103/77,12=3444 Н

Радиальную силу для шестерни равной осевой силе для колеса Fr1, Fа2, H, вычисляют по формуле

Fr1= Fа2= Ft*tgα* cos δ1,

где α–угол зацепления, α=20о

Fr1= Fа2=3444*tg20о*cos 11o=1230 H

Осевую силу для шестерни равную радиальной силе для колеса Fа1, Fr2, Н,

вычисляют по формуле

Fа2= Fr1= Ft*tg α*sin δ1

Fа1= Fr2=3444* tg 20о*sin 79о=1230 Н

Напряжение изгиба σf, МПа, вычисляют по формуле

σf=( Ft*Kf*Yf)/(b*m)≤ [σf],

где Kf= Kfβ* Kfυ–коэффициент нагрузки,

где Kfβ–коэффициент, учитывающий неравномерность распределения

нагрузки по длине зуба, Kfβ=1,49 (1.табл.3.7);

Kfυ–динамический коэффициент, Kfυ=1 (1.табл.3.8).

Kf=1,49*1=1,49

Эквивалентное число зубьев zυ1, zυ2, вычисляют по формулам

для шестерни zυ1= z1/ cos δ1

для колеса zυ2= z2/ cos δ2

для шестерни zυ1= 25/ cos 11о =26

для колеса zυ2= 125/ cos 79о=655

Yf1– коэффициент формы зуба шестерни, Yf1=3,88(1.стр.42)

Yf2– коэффициент формы зуба колеса, Yf2=3,60(1.стр.42)

Допускаемое контактное напряжение [σf], МПа, вычисляют по формуле

[σf]=(G0limb)/[Sf],

где G0limb–предел контактной выносливости при базовом числе циклов

для шестерни G0limb=1,8*270=490 МПа

для колеса G0limb=1,8*245=440 МПа

[Sf]–коэффициент безопасности, [Sf]=1,75(1.стр.344).

Допускаемое напряжение [σf1], [σf2] вычисляют по формуле

для шестерни [σf1]=490/1,75=280 МПа

для колеса [σf2]=440/1,75=251 МПа

Находим отношение [σf]/Yf

для шестерни 280/3,88=72 МПА

для колеса 251/3,60=70 МПа

Дальнейший расчет следует вести для зубьев колеса, для которого найдено

меньшее отношение

σf=( Ft*Kf*Yf2)/(b*m)< [σf]

σf=( 3444*1,49*3,60)/(65,4*3,08)=91,7 МПа< [σf]=251 МПа

Условие прочности выполнено

2.2.7 Проверка долговечности подшипников

Таблица 3–Подшипники в редукторе

Условное

обозначение

подшипника d D B C C0

мм кН

107 35 62 14 15,9 8,5

408 40 110 27 63,7 36,5

Ведущий вал

Ft1=1328 H Fr1=483 H

l1=0,05 м

Вертикальная плоскость

∑М2=0

Ry1*2*l1-Fr1*l1=0

Ry1= Fr1*l1/(2*l1)

Ry1= 483*0,07/(2*0,07)=241,5 Н

∑М1=0

Fr1*l1-Ry2*2*l1=0

Ry2= (Fr1*l1)/(2* l1)

Ry2=(483*0,05)/(2* 0,05)=241,5 Н

Проверка

∑Fiy=0

- Ry2-Ry1+Fr1=0

-241,5-241,5+483=0

Горизонтальная плоскость

Rx2= Rx1= Ft1/2

Rx2= Rx1=1328/2=664 Н

Суммарную реакцию Pr, H, вычисляют по формуле

Pr=√ (Rx)2+ (Ry)2

Pr1=√6642+241,52=707 Н

Pr2=√6642+241,52=707 Н

Осевую нагрузку подшипников Pa, Н, вычисляют по формуле

Pa=Fa1

Pa= 0 Н

Рассмотрим правый подшипник

Отношение

Pa/ C0=0/8500=0

Отношение

Pa/ Pr2=0/707=0<e

Эквивалентную нагрузку Pэ2, Н, вычисляют по формуле

Pэ2=V*Pr2*Kб*Kт,

где V–коэффициент, V=1(1.П7);

Kб– коэффициент, Kб=1,2(1.табл.9.19);

Kт– коэффициент, Kт=1(1.табл.9.20).

Pэ2= 1*707*1,2*1=848,4 Н

Расчетную долговечность L2, млн.об, вычисляют по формуле

L2=(C/Pэ2)3,

где C–динамическая грузоподъемность, C=15,9 кН (табл.2).

L2=(15,9/0,85)3=6 500 млн.об.

Расчетную долговечность LH3, ч, вычислят по формуле

LH3=(L2*106)/(60*n),

где n–частота вращения ведущего вала, n=949 об/мин (табл.1).

LH3=(6 500*106)/(60*949)≈ 115 000ч

Данная долговечность приемлема

Ведомый вал

Ft2=1328 H Ft3=3444 H l3=0,08 м

Fr2=483 H Fr3=1230 H d3/2= 0,039 м

l2=0,05 м Fa3=1230 H

Вертикальная плоскость

∑М4=0

-Ry3*2*l2+Fr2*l2-Fr3*l3+Fa3*d3/2=0

Ry3= (Fr2*l2-Fr3*l3+Fa3*d3/2)/ (2*l2)

Ry3= (483*0,05-1230*0,08+1230*0,039)/ (2*0,05)= -262,8 Н

∑М3=0

Ry4*2*l2-Fr2*l2-Fr3*(l3+2* l2)+Fa3*d3/2=0

Ry4= (Fr2*l2+Fr3*(l3+2* l2)-Fa3*d3/2)/ (2*l2)

Ry4= (483*0,05+1230*(0,08+2*0,05)-1230*0,039)/ (2*0,05)=1975,8 Н

Проверка

∑Fiy=0

Ry3+Ry4- Fr2- Fr3 = 0

-262,8+1975,8 - 483 -1230 = 0

Горизонтальная плоскость

∑М4=0

Rx3*2*l2-Ft2*l2-Ft3*l3=0

Rx3= (Ft2*l2+Ft3*l3)/( 2*l2)

Rx3=(1328*0,05+3444*0,08)/( 2*0,05)=3419,2 Н

∑М3=0

Rx4*2*l2+Ft2*l2-Ft3*(l3+2*l2)=0

Rx4=(Ft3*(l3+2*l2)- Ft2*l2)/( 2*l2)

Rx4= (3444*(0,08+2*0,05)- 1328*0,05)/( 2*0,05)=5535,2 Н

Проверка

∑Fix=0

-Rx3+Rx4+Ft2- Ft3 = 0

-3419,2+5535,2+1328-3444=0

Суммарную реакцию Pr, H, вычисляют по формуле

Pr=√ (Rx)2+ (Ry)2

Pr3=√3419,22+262,82=3429 Н

Pr4=√5535,22+1975,82=5877 Н

Осевую нагрузку подшипников Pa, Н, вычисляют по формуле

Pa=Fa3

Pa= 1230 Н

Рассмотрим правый подшипник

Отношение

Pa/ C0=1230/36500=0,033

Отношение

Pa/ Pr4=1230/5877=0,21<e=0,24

Эквивалентную нагрузку Pэ4, Н, вычисляют по формуле

Pэ4=V*Pr4*Kб*Kт,

где V–коэффициент, V=1(1.П7);

Kб– коэффициент, Kб=1,2(1.табл.9.19);

Kт– коэффициент, Kт=1(1.табл.9.20).

Pэ4= 1*5877*1,2*1=7052 Н

Расчетную долговечность L4, млн.об, вычисляют по формуле

L4=(C/Pэ4)3,

где C–динамическая грузоподъемность, C=63,7 кН (табл.2).

L4=(63,7/7,052)3= 737 млн.об.

Расчетную долговечность Lh4, ч, вычислят по формуле

Lh4=(L4*106)/(60*n),

где n–частота вращения ведомого вала, n=237,3 об/мин(табл.1).

Lh4=(737*106)/(60*237,3)≈ 52 000 ч

Данная долговечность приемлема

2.2.8 Уточненный расчет валов

Принимаем для валов Сталь 45, термическая обработка–нормализация.

Пределы выносливости σ-1, τ-1, МПа вычисляют по формуле

σ-1=0,43*[σв]

τ-1=0,58* σ-1,

где [σв]–предел прочности, [σв]=570 МПа (1.табл.3.3).

σ-1=0,43*570=245 МПа

τ-1=0,58*245=142 МПа

Ведущий вал

Сечение А-А (под муфтой)

Концентрация напряжений вызвана наличием шпоночной канавки.

Изгибающий момент М1, Н*мм, по ГОСТ 16162-78 вычисляют по формуле

М1=2,5*√T1*(L/2),

где L–длина посадочного участка полумуфты, L=0,08 м.

М1=2,5*√33,2*1000*(0,08/2)=18,2 Н*мм

Момент сопротивления сечения W1, мм3, вычисляют по формуле

W1=π*(dв1)3/32-(b1*t1*(dв1-t1)2/(2*dв1)),

W1=3,14*(30)3/32-(10*5*(30-5)2/(2*30))=2,13*103 мм3

Амплитуду и максимальное напряжение цикла по нормальным напряжениям συ, МПа, вычисляют по формуле

συ= σmax= М1/ W1

συ= σmax=18,2*103/2,13*103=8,5 МПа

Коэффициент запаса прочности по нормальным напряжениям sυ вычисляют по формуле

sσ= σ-1/(( kσ/ εσ)* συ),

где kσ=1,6 (1.табл.8.5);

εσ=0,88 (1.табл.8.8).

sσ= 245/((1,6/0,88)*22,2)=6,07

Момент сопротивления кручению Wк1, мм3, вычисляют по формуле

Wк1=π*(dк1)3/16-(b1*t1*(dк1-t1)2/(2*dк1)),

Wк1= 3,14*(30)3/16-(10*5*(30-5)2/(2*30))=4,23*103 мм3

Амплитуду и среднее напряжение цикла касательных напряжений τυ, МПа,

вычисляют по формуле

τυ= τm= τmax/2=0,5*T1/ Wк1

τυ= τm= τmax/2=0,5*33,2*103/4,23*103=3,92 МПа

Коэффициент запаса прочности по касательным напряжениям sτ вычисляют по формуле

sτ= τ-1/(( kτ/ ετ)* τυ+ψττm),

где kτ=1,5 (1.табл.8.5);

ετ=0,77 (1.табл.8.8);

ψτ–коэффициент, ψτ=0,1.

sτ= 142/((1,5/0,77)*3,92+0,1*3,92)=17,15

Коэффициент запаса прочности s вычисляют по формуле

s= (sσ* sτ)/(√( sσ)2+( sτ)2)≥[s]

s= (6,07*17,15)/(√(6,07)2+(17,15)2) = 5,72>[s]=2

Полученный коэффициент соответствует нормативам

Ведомый вал

Сечение Б-Б

Концентрация напряжений вызвана напрессовкой подшипника.

Суммарный изгибающий момент М2, Н*мм, вычисляют по формуле

М2=√(Mx2)2+(My2)2,

где Mx2, My2–изгибающие моменты под правым подшипником,

Mx2=50,43*103 Н*мм

My2=275,52*103 Н*мм

М2=√50,43*103)2+(275,52*103)2=280*103 Н*мм

Момент сопротивления сечения Wнетто2, мм3, вычисляют по формуле

Wнетто2=π*(dп2)3/32

Wнетто2=3,14*(40)3/32)=6,28*103 мм3

Амплитуду и максимальное напряжение цикла по нормальным напряжениям συ, МПа, вычисляют по формуле

συ= σmax= М2/ W2

συ= σmax=280*103/6,28*103=44,6 МПа

Коэффициент запаса прочности по нормальным напряжениям sυ вычисляют по формуле

sσ= σ-1/(( kσ/ εσ)* συ),

где kσ/ εσ =2,7 (1.табл.8.7);

sσ= 245/(2,7*44,6)=2,04

Момент сопротивления кручению Wкнетто2, мм3, вычисляют по формуле

Wкнетто2=π*(dп2)3/16

Wкнетто2= 3,14*(40)3/16=12,56*103 мм3

Амплитуду и среднее напряжение цикла касательных напряжений συ, МПа,

вычисляют по формуле

τυ= τm= τmax/2=0,5*T2/ Wкнетто2

τυ= τm= τmax/2=0,5*132,8*103/12,56*103=5,29 МПа

Коэффициент запаса прочности по касательным напряжениям sτ вычисляют по формуле

sτ= τ-1/(( kτ/ ετ)* τυ+ψττm),

где kτ/ ετ =2,02 (1.табл.8.7);

ψτ–коэффициент, ψτ=0,1.

sτ= 142/(2,02*5,29+0,1*5,29)=12,7

Коэффициент запаса прочности s вычисляют по формуле

s= (sσ* sτ)/(√( sσ)2+( sτ)2)≥[s]

s= (2,04*12,7)/(√(2,04)2+(12,7)2)=2,02>[s]=2

Полученный коэффициент соответствует нормативам

Таблица 4–Коэффициенты запаса прочности в опасных сечениях

Опасные сечения А-А Б-Б

Коэффициент запаса прочности s 5,72 2,02

Во всех сечениях s>[s]=2

2.2.9 Проверка прочности шпоночных соединений

Шпонка под полумуфтой

dв1=30 мм

b×h×l= 10×8×60

t1=5 мм

T1=33,2 Н*м

Напряжение смятия σсм, МПа, вычисляют по формуле

σсм=2*T2/( dв1*(h-t)*(l-b))≤ [σсм]

σсм=2*33,2*1000/( 30*(8-5)*(60-10))=14,75 МПа< [σсм] =120 МПа

Условие прочности выполнено

Шпонка под колесом

dк2=45 мм

b×h×l= 14×9×50

t=5,5 мм

T2=132,8 Н*м

σсм=2*132,8*1000/( 45*(9-5,5)*(50-14))=46,8 МПа< [σсм] =120 МПа

Условие прочности выполнено

Шпонка под конической шестерней

dв2=35 мм

b×h×l= 10×8×60

t=5 мм

T2= 132,8 Н*м

σсм=2*132,8*1000/( 35*(8-5)*(60-10))= 50,6 МПа< [σсм] =120 МПа

Условие прочности не выполнено, ставлю 2 шпонки.