Непредельные, или ненасыщенные, углеводороды ряда этилена (алкены, или олефины)

Непредельные, или ненасыщенные, углеводороды ряда этилена (алкены, или олефины)

Алкены, или олефины (от лат. olefiant - масло — старое название, но широко используемое в химической литературе. Поводом к такому названию послужил хлористый этилен, полученный в XVIII столетии, — жидкое маслянист вещество.) — алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь.

Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными.

Алкены образуют гомологический ряд с общей формулой CnH>2>n.

1. Строение алкенов

Простейшим представителем этиленовых углеводородов, его родоначальником является этилен (этен) С>2>4>. Строение его молекула можно выразить такими формулами:

H H H H

| | : :

C==C C::C

| | : :

H H H H

По названию первого представителя этого ряда — этилена — такие углеводороды называют этиленовыми.

В этиленовых углеводородах (алкенах) атомы углерода находятся во втором валентном состоянии (>2>-гибридизапия). Напомним, что в этом случае между углеродными атомами возникает двойная связь, состоящая из одной - и одной -связи. Длина и энергия двойной связи равны соответственно 0,134 нм и 610 кДж/моль. Разница в энергиях - и -связей (610 - 350 = 260) является приблизительной мерой, характеризующей прочность -связи. Будучи более слабой, она в первую очередь подвергается разрушительному действию химического реагента.

2. Номенклатура и изомерия

Номенклатура. Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан — этилен, пропан — пропилен и т.д.

По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан — алкен, этан — этен, пропан — пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:

СH>3>

|

H>3>C—CH>2>—C—CH==CH>2> H>3>C—C==CH—CH—CH>2>—CH>3>

| | |

CH>3> CH>3> CH>3>

3,3-диметилпентен-1 2,4-диметилгексен-2

Иногда используют и рациональные названия. В этом случае все алкеновые углеводороды рассматривают как замещенные этилена:

Н>3>С—СН==СН—CH>2>—СН>3>

метилэтилэтилен

Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:

Н>2>С==СН— - винил (этенил)

Н>2>С==CН—СН>2> - аллил (пропенил->2>)

Изомерия.

Для алкенов характерны два вида структурной изомерии. Кроме изомерии, связанной со строением углеродного скелета (как у алканов), появляется изомерия, зависящая от положения двойной связи в цепи. Это приводит к увеличению числа изомеров в ряду алкенов.

Первые два члена гомологического ряда алкенов - этилен и пропиле) - изомеров не имеют и их строение можно выразить так:

H>2>C==CH>2> H>2>C==CH—CH>3>

этилен пропилен

(этен) (пропен)

Для углеводорода С>4>H>8> возможны три изомера:

CH>3>

|

H>2>C==CH—CH>2>—CH>3> H>3>C—CH==CH—CH>3> H>2>C==C—CH>3>

бутен-1 бутен-2 2-метилпропен-1

Первые два отличаются между собой положением двойной связи углеродной цепи, а третий — характером цепи (изостроение).

Однако в ряду этиленовых углеводородов помимо структурно изомерии возможен еще один вид изомерии — цис-, транс-изомерия (геометрическая изомерия). Такая изомерия характерна для соединений с двойной связью. Если простая -связь допускает свободное вращение отдельных звеньев углеродной цепи вокруг своей оси, то вокруг двойной связи такого вращения не происходит. Это и является причиной появления геометрических (цис-, транс-) изомеров.

Геометрическая изомерия — один из видов пространственной изомерии.

Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами, а по разную — транс-изомерами:

H H H CH>3>

| | | |

C==C C==C

| | | |

H>3>C CH>3> H>3>C H

цис-бутен-2 транс-бутен-2

Цис- и транс-изомеры отличаются не только пространственным строением, но и многими физическими и химическими свойствами. Транс-изомеры более устойчивы, чем цис-изомеры.

3. Получение алкенов

В природе алкены встречаются редко. Обычно газообразные алкены (этилен, пропилен, бутилены) выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля. В промышленности алкены получают дегидрированием алканов в присутствии катализатора (Сr>2>3>). Например:

 H>2>C==CH—CH>2>—CH>3>

H>3>C—CH>2>—CH>2>—CH>3>  -H>2> бутен-1

бутан H>3>C—CH==CH—CH>3>

> бутен-2>

Из лабораторных способов получения можно отметить следующие:

1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:

H>2>C—CH>2>  H>2>C==CH>2> + KCl + H>2>O

| |

Cl H

K—OH

2. Гидрирование ацетилена в присутствии катализатора (Pd):

H—CC—H + H>2>  H>2>C==CH>2>

3. Дегидратация спиртов (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или А1>2>O>3>:

Н>2>С—СН>2>  Н>2>С==СН>2> + Н>2

| |

H OH

этиловый

спирт

В таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродною атома (правило А.М.Зайцева):

H OH

| |

H>3>C—C—CH—CH>3>  H>3>C—C==CH—CH>3> + H>2>O

| |

CH>3> CH>3>

3-метилбутанол-2 2-метилбутен-2

4. Физические и химические свойства :

Физические свойства. Физические свойства некоторых алкенов показаны в табл. 1. Первые три представителя гомологического ряда алкенов (этилен, пропилен и бутилен) — газы, начиная с C>5>H>10 >(амилен, или пентен-1) — жидкости, а с С>18>36> — твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температуры кипения цис-изомеров выше, чем транс-изомеров, а температуры плавления — наоборот.

Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы), но хорошо — в органических растворителях. Этилен и пропилен горят коптящим пламенем.

Таблица 1. Физические свойства некоторых алкенов

Название

Формула

t >пл>,°С

t >кип>,°С

d20>4>

Этилен (этен)

С>2>4>

-169,1

-103,7

0,5700

Пропилен (пропен)

С>3>6>

-187,6

-47,7

0,5193*

Бутилен (бутен-1)

C>4>H>8>

-185,3

-6,3

0,5951

Цис-бутен-2

С>4>8>

-138,9

3,7

0,6213

Транс-бутен-2

С>4>8>

-105,5

0,9

0,6042

Изобутилен (2-метилпропен)

С>4>8>

-140,4

-7,0

0,5942*

Амилен (пентен-1)

C>5>H>10>

-165,2

+30,1

0,6405

Гексилен (гексен-1)

С>6>12>

-139,8

63,5

0,6730

Гептилен (гептен-1)

C>7>H>14>

-119

93,6

0,6970

Октилен (октен-1)

C>8>H>16>

-101,7

121,3

0,7140

Нонилен (нонен-1)

C>9>H>18>

-81,4

146,8

0,7290

Децилен (децен-1)

С>10>20>

-66,3

170,6

0,7410

* Жидкий

Алкены малополярны, но легко поляризуются.

Химические свойства.

Алкены обладают значительной реакционной способностью. Их химические свойства определяются, главным образом, двойной углерод-углеродной связью. -Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:

\  / \ /

C==C + A—B  C—C

/  \ / |  | \

А В

Таким образом, при реакциях присоединения двойная связь разрывается как бы наполовину (с сохранением -связи).

Для алкенов, кроме присоединения, характерны еще реакции окисления и полимеризации.

Реакции присоединения. Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.

1. Гидрирование (присоединение водорода). Алкены, присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), переходят в предельные углеводороды — алканы:

Н>2>С==СН>2> + H>2>  Н>3>С—СН>3>

этилен этан

2. Галогенирование (присоединение галогенов). Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных:

Н>2>С==СН>2> + Cl>2>  ClH>2>C—CH>2>Cl

1,2-дихлорэтан

Легче идет присоединение хлора и брома, труднее — иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом.

Сравните: у алкенов реакция галогенирования — процесс присоединения, а не замещения (как у алканов).

Реакцию галогенирования обычно проводят в растворителе при обычной температуре.

Электрофильное присоединение галогенов к алкенам можно представить следующим образом. Вначале под влиянием -электронов алкена происходит поляризация молекулы галогена с образованием переходной неустойчивой системы (-комплекс):

H>2>CCH>2>

Br+  Br-

-комплекс

Стрелка, пересекающая двойную связь, обозначает взаимодействие -электронной системы алкена с молекулой брома ("перекачка" -электронной плотности на Br+). В данном случае двойная связь, имеющая высокую электронную плотность, выступает в качестве донора электронов. Затем -комплекс разрушается: двойная связь и связь между атомами брома гетеролитически разрываются с образованием двух ионов брома — аниона и катиона. Катион за счет электронов -связи образует с углеродом обычную -связь С—Br. Так возникает другая неустойчивая система — карбкатион (-комплекс):

H>2>C|CH>2>  H>2>C –CH>2>+ + Br-  H>2>C—CH>2>

 | —  | |

Br+  Br- Br Br Br

карбкатион 1,2-дибром-

(-комплекс) этан

Результат этой реакции нетрудно предвидеть: анион брома атакует карбкатион с образованием дибромэтана.

Присоединение брома к алкенам (реакция бромирования) — качественная реакция на предельные углеводороды. При пропускании через бромную воду (раствор брома в воде) непредельных углеводородов желтая окраска исчезает (в случае предельных — сохраняется).

3. Гидрогалогенирование (присоединение галогеноводородов). Алкены легко присоединяют галогенводороды:

H>2>С==СН>2> + НВr  Н>3>С—CH>2>Вr

Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова (1837—1904): при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода, а галоген — к менее гидрогенизированному:

>>——————————|

Н>2>С=СН—СН>3> + Н—Вr  Н>3>С—СН—СН>3>

>————————>| |

Br

2-бромпропан

Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно. Под влиянием могильной группы, связанной непосредственно с двойной связью, происходит смещение электронной плотности в сторону этой связи (на крайний углеродный атом).

Вследствие такого смещения -связь поляризуется и на углеродных атомах возникают частичные заряды. Легко представить, что положительно заряженный ион водорода (протон) присоединится к атому углерода (электрофильное присоединение), имеющему частичный отрицательный заряд, а анион брома — к углероду с частичным положительным зарядом.

Такое присоединение является следствием взаимного влияния атомов в органической молекуле. Как известно, электроотрицательность атома углерода немного выше, чем водорода. Поэтому в метильной группе наблюдается некоторая поляризация -связей С—Н, связанная со смещением электронной плотности от водородных атомов к углероду. В свою очередь это вызывает повышение электронной плотности в области двойной связи и особенно на ее крайнем, атоме. Таким образом, метильная группа, как и другие алкильные группы, выступает в качестве донора электронов. Однако в присутствии пероксидных соединений или О>2> (когда реакция имеет радикальный характер) эта реакция может идти и против правила Марковникова.

По тем же причинам правило Марковникова соблюдается при присоединении к несимметричным алкенам не только галогеноводоро-дов, но и других электрофильных реагентов (H>2>O, H>2>SО>4>, НОС1, IC1 и др.). При этом катионные и анионные части таких реагентов будут следующими:

Катион..... Н H Н Н Н С1 I

Анион ...... С1 Br I SO>4>H ОН ОН С1

Как известно, катионная часть реагента при присоединении идет к наиболее гидронизированному углеродному атому, а анионная часть — к менее гидронизированному.

4. Гидратация (присоединение воды). В присутствии катализаторов [H>2>SO>4> (конц.) и др.] к алкенам присоединяется вода с образованием спиртов. Например:

H>3>C—CH==CH>2> + H—OH  H>3>C—CH—CH>3>

|

OH

пропилен изопропиловый

спирт

Реакции окисления. Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения этой реакции.

1. Окисление при обычной температуре. При действии на этилен водного раствора КМnO>4> (при нормальных условиях) происходит образование двухатомного спирта — этиленгликоля:

3H>2>C==CH>2> + 2KMnO>4> + 4H>2>O  3HOCH>2>—CH>2>OH + 2MnO>2> + KOH

этиленгликоль

Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.

В более жестких условиях (окисление КМnO>4> в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов:

H>3>C—CH=|=CH—CH>3> + 2O>2>  2H>3>C—COOH

уксусная кислота

При окислении этилена кислородом воздуха в присутствии металлического серебра образуется оксид этилена:

> 350°C>

>2>С==СН>2> + O>2>  2Н>2>С——СН>2>

Ag \ O /

оксид этилена

2. Горение алкенов. Как и алканы, непредельные соединения ряда этилена сгорают на воздухе с образованием оксида углерода (IV) и воды:

Н>2>С=СН>2> + 3O>2>  2СO>2> + 2Н>2>O

Реакция изомеризации. При нагревании или в присутствии катализаторов алкены способны изомеризоваться — происходит перемещение двойной связи или установление изостроения.

Реакции полимеризации. За счет разрыва -связей молекулы алкена могут соединяться друг с другом, образуя длинные цепные молекулы.

5. Отдельные представители

Этилен (этен) Н>2>С==CН>2> - газ без цвета и запаха, мало растворимый в воде. Как и метан, с воздухом образует взрывоопасные смеси. Широко используется для получения различных органических веществ: этилового спирта, стирола, галогенопроизводных, полиэтилена, оксида этилена и др.

Пропилен (пропен) Н>3>С—СН==СН>2> служит сырьем для получения изопропилбензола, ацетона, фенола, полипропилена, глицерина, изопропилового спирта, синтетического каучука и других ценных органических продуктов.

Бутилены (бутен-1 и бутен-2), изобутилен (3-метилпропен-1) C>4>H>8>. Бутен-1 применяется для получения дивинила и изооктана, а бутен-2 — в качестве среды при полимеризации дивинила. Из изобутилена получают изооктан, изопропен и полиизобутилен.

Следует отметить, что алкены широко используются в качестве мономеров для получения многих высокомолекулярных соединений (полимеров).

Список литературы

Для подготовки данной применялись материалы сети Интернет из общего доступа