Применение проблемного обучения при изучении темы: "Предельные одноосновные кислоты"
Применение проблемного обучения при изучении темы: «Предельные одноосновные кислоты»
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. СПОСОБЫ ВЫЯВЛЕНИЯ УЧЕБНЫХ ПРОБЛЕМ В ХИМИИ
2. ОСНОВНЫЕ ПРОБЛЕМНЫЕ СИТУАЦИИ ПРИ ИЗУЧЕНИИ ТЕМЫ «ПРЕДЕЛЬНЫЕ ОДНОООСНОВНЫЕ КИСЛОТЫ»
3. ПРИМЕРЫ ПРОБЛЕМНЫХ СИТУАЦИЙ И ИХ РЕШЕНИЕ
ВЫВОД
ЛИТЕРАТУРА
ВВЕДЕНИЕ
В условиях научно-технического прогресса требования к развивающей функции обучения постоянно растут. Обществу нужны люди, умеющие творчески мыслить, решать поставленные перед ними задачи. Поэтому обучение не может ограничиваться передачей простой суммы знаний. Не менее важной задачей является формирование диалектического, системного мышления школьника в процессе учения. Среди существующих методических подходов наиболее отвечает этим задачам проблемное обучение.
Идея зависимости свойств веществ от их состава является центральной проблемой, рассматриваемой в разных конкретных темах. Решение этой общей проблемы зависит от более частных. После изучения теории строения атома более общая проблема зависимости свойств элементов от строения их атомов может расчленяться в процессе решения на частные: почему сходны свойства у лития и натрия? Почему свойства элементов изменяются периодически? Почему, несмотря на нарушение последовательности возрастания относительных атомных масс, аргон и калий имеют соответственно порядковые номера 18 и 19, а не наоборот? Другими словами, на каждой ступени обучения свои проблемы, которые учащиеся решают в зависимости от уровня подготовки по предмету и своего развития.
1. СПОСОБЫ ВЫЯВЛЕНИЯ УЧЕБНЫХ ПРОБЛЕМ В ХИМИИ
Проблемное обучение — это развивающее обучение, так как мыслить человек начинает лишь тогда, когда у него есть потребность что-то понять. А такая потребность возникает лучше всего в условиях проблемного обучения. Следовательно, задача, которая стоит перед учителем в рамках проблемного обучения, — определить, как и когда его использовать. Учащиеся же должны решать проблемы, которые ставит перед ними учитель. Главное при осуществлении проблемного обучения — проанализировать содержание, чтобы обнаружить в нем проблемы, а затем выстроить их в порядке подчинения друг другу. В этом случае использование проблемного обучения приобретает свойство системности, что очень важно для развития мышления.
Учебные проблемы легко обнаруживаются при установлении связей между теориями и фактами, между теориями и понятиями, между отдельными понятиями и т. д. Так, например, проблема, почему одни вещества являются электролитами, а другие — нет, возникает при установлении связи между теорией строения вещества и обнаруженным фактом различного поведения веществ в растворе, а проблема определения оптимальных условий для производства аммиака — на основе закономерностей реакции его синтеза и возможностей производственных аппаратов — при установлении связей между системами понятий о химической реакции и об основах химического производства. Проблемы объяснения свойств веществ на основе их строения и, наоборот, заключение о строении вещества на основе его свойств возникают при выявлении связей между теорией строения вещества и системой понятий о веществе.
Таким образом, для того чтобы отыскать учебную проблему, необходимо проанализировать содержание, а для того чтобы это сделать, нужно прежде всего вскрыть его структуру, т. е. выделить элементы содержания и связи между ними, а также внутрипредметные связи с предыдущими и последующими темами. Например, при изучении свойств аммиака вначале характеризуют строение атомов элементов азота и водорода, строение молекулы аммиака, определяют степени окисления атомов азота и водорода в аммиаке, а затем химические свойства этого соединения.
Здесь решается несколько проблем. Даже на самом первом этапе урока при изучении состава аммиака можно не просто информативно сообщить, что его формула NH>3>, а связь между атомами полярная, а предложить учащимся обосновать состав этого соединения, т. е. установить связь между составом соединения и строением образующих его атомов. Объяснить, например, какая существует зависимость между полярной связью в молекуле аммиака и его взаимодействием с водой и кислотами, предположить, исходя из степени окисления азота в аммиаке, поведение его в окислительно-восстановительных реакциях, попытаться подобрать примеры таких реакций с участием аммиака.
Установив связь темы «Подгруппа азота» с темами «Галогены» и «Подгруппа кислорода», базируясь на теоретической концепции о сущности процесса диссоциации, объяснить, почему растворы соляной и сероводородной кислот имеют кислую реакцию, а аммиака — щелочную. Это создает условия для последующего обобщения сведений о летучих водородных соединениях элементов разных групп периодической системы. Постановка проблемного вопроса о том, до какой максимальной положительной степени окисления может окисляться атом азота в составе аммиака, позволит осуществить перспективную внутрипредметную связь с материалом об азотной кислоте.
Таким образом, проблемное обучение практически возможно на любом этапе обучения, но по-разному реализуется в зависимости от химического содержания учебного материала и возрастных особенностей учащихся.
Признаки учебной проблемы следующие: наличие проблемной ситуации, готовность субъекта к поиску решения, возможность неоднозначного пути решения. Их можно считать условиями осуществления проблемного обучения.
Этапы осуществления проблемного обучения
Существуют следующие этапы осуществления проблемного подхода:
Первый этап. Подготовка к восприятию проблемы. На этом этапе проводится актуализация знаний, которые необходимы для того, чтобы учащиеся могли решить проблему, так как при отсутствии необходимой подготовки они не могут приступить к решению. Например, если поставить перед учащимися VII класса вопрос, почему вещества, имеющие одинаковый количественный и качественный состав, обладают разными свойствами, эта важнейшая химическая проблема не вызовет потребности ее решать, так как их знаний пока недостаточно.
Второй этап. Создание проблемной ситуации. Это самый ответственный и сложный этап проблемного подхода, который характерен тем, что учащийся не может выполнить задачу, поставленную перед ним учителем, с помощью имеющихся у него знаний и должен дополнить их новыми. Учащийся обязан осознать причину этого затруднения. Однако проблема должна быть посильной. Класс может быть готов к ее решению, но учащиеся должны получить установку к действию. Они примут задание к исполнению, когда будет четко сформулирована проблема.
Третий этап. Формулирование проблемы — это итог возникшей проблемной ситуации. Она указывает, на что учащиеся должны направить свои усилия, на какой вопрос искать ответ. Это познавательная задача, которую ставит перед учащимися учитель. Если учащиеся систематически вовлекаются в решение проблем, они могут сформулировать проблему сами.
Четвертый этап. Процесс решения проблемы. Он состоит из нескольких ступеней: а) выдвижение гипотез; б) построение плана решения для проверки каждой гипотезы; в) подтверждение или опровержение гипотезы.
Пятый этап. Доказательство правильности избранного решения, подтверждение его, если возможно, на практике.
Способы создания проблемных ситуаций
Этап создания проблемной ситуации требует от учителя большого мастерства. Поэтому не случайно методисты уделяют ему большое внимание.
В методике обучения химии способы создания проблемной ситуации сформулированы следующим образом.
Демонстрация или сообщение некоторых фактов, которые учащимся неизвестны и требуют для объяснения дополнительной информации. Они побуждают к поиску новых знаний. Например, учитель демонстрирует аллотропные видоизменения элементов и требует объяснить, почему они возможны или, например, учащиеся еще не знают, что хлорид аммония может возгоняться, а им предлагают вопрос, как разделить смесь хлорида аммония и хлорида калия.
Использование противоречия между имеющимися знаниями и изучаемыми фактами, когда на основании известных знаний учащиеся высказывают неправильные суждения. Например, учитель задает вопрос: может ли при пропускании оксида углерода (IV) через известковую воду получиться прозрачный раствор? Учащиеся на основании предшествующего опыта отвечают отрицательно, а учитель показывает опыт с образованием гидрокарбоната кальция.
Объяснение фактов на основании известной теории. Например, почему при электролизе раствора сульфата натрия на катоде выделяется водород, а на аноде — кислород? Учащиеся должны ответить на вопрос, пользуясь справочными таблицами: рядом напряжений металлов, рядом анионов, расположенных в порядке убывания способности к окислению, и сведениями об окислительно-восстановительной сущности электролиза.
С помощью известной теории строится гипотеза и затем проверяется практикой. Например, будет ли уксусная кислота как кислота органическая проявлять общие свойства кислот? Учащиеся высказывают предположения, учитель ставит эксперимент, а затем дается теоретическое объяснение.
Нахождение рационального пути решения, когда заданы условия и дается конечная цель. Например, учитель предлагает экспериментальную задачу: даны три пробирки с веществами. Определить эти вещества наиболее коротким путем, с наименьшим числом проб.
Нахождение самостоятельного решения при заданных условиях. Это уже творческая задача, для решения которой недостаточно урока. Нужно дать учащимся подумать дома, использовать дополнительную литературу, справочники. Например, подобрать условия для определенной реакции, зная свойства веществ, вступающих в нее, высказать предположения по оптимизации изучаемого производственного процесса.
7. Принцип историзма также создает условия для проблемного обучения. Например, поиск путем систематизации химических элементов, приведший в конечном счете Д. И. Менделеева к открытию периодического закона. Многочисленные проблемы, связанные с объяснением взаимного влияния атомов в молекулах органических веществ на основе электронного строения, также являются отражением вопросов, возникавших в истории развития органической химии.
При использовании проблемного подхода нужно помнить, что только тогда можно говорить о развитии мышления, когда проблемные ситуации используются регулярно, сменяя одна другую, т. е. характеризуются динамичностью.
Наиболее удачно найденной проблемной ситуацией следует считать такую, при которой проблему формулируют сами учащиеся.
Особенности использования проблемного обучения на уроке.
Учитель при реализации проблемного обучения строит взаимоотношения с классом так, чтобы учащиеся смогли проявить инициативу, высказать предположения, иногда неправильные, но их во время дискуссии опровергнут другие учащиеся. Каждое предположение должно быть обоснованным. Следует отличать гипотезу от угадывания, не имеющего ничего общего с проблемным обучением.
Вопросы учителя должны обязательно носить проблемный характер. Если учитель выказывает свое предположение, то он его также обосновывает. Чтобы умело руководить дискуссией и направлять ее в нужное русло, требуется серьезная теоретическая подготовка и глубокое знание предмета.
Не обязательно, чтобы на уроке использовались все этапы проблемного обучения. В объяснение можно включать отдельные вопросы проблемного характера. Например, при изучении электролиза раствора хлорида натрия можно поставить вопрос, почему на катоде восстанавливается не ион натрия, а ион водорода, и предложить учащимся на основе электрохимического ряда напряжений объяснить причину этого явления. Если же вопрос требует только репродуктивного ответа, его проблемным считать нельзя. Как и всякий методический подход, проблемное обучение имеет не только позитивные, но и негативные стороны.
Важной положительной стороной проблемного обучения является его развивающий характер. Изложение делается более доказательным и потому убедительным. Учащиеся мыслят творчески, диалектически, приучаются к поиску. Обучение с использованием такого подхода более эмоционально, что способствует повышению интереса к учению, оказывает воспитывающее воздействие, так как это формирует убеждения и в конечном счете мировоззрение, обеспечивает прочность знаний, так как знания, добытые путем самостоятельного поиска, всегда удерживаются сознанием дольше полученных в готовом виде.
В результате осуществления проблемного подхода учащиеся приобретают новые знания, устанавливают новые связи между известными и неизвестными фактами и понятиями. Проблемное обучение можно использовать и как способ диагностики интеллектуальных возможностей учащихся.
К недостаткам проблемного подхода следует отнести слабую управляемость мыслительным процессом. Однако в этом заключено и его преимущество, так как творческое мышление требует свободы. Осуществление проблемного подхода требует гораздо больше времени.
2. ОСНОВНЫЕ ПРОБЛЕМНЫЕ СИТУАЦИИ ПРИ ИЗУЧЕНИИ ТЕМЫ «ПРЕДЕЛЬНЫЕ ОДНОООСНОВНЫЕ КИСЛОТЫ»
Карбоновые кислоты. Получение, применение и их важнейшие представители
Карбоновые кислоты – класс органических соединений, молекулы которых содержат карбоксильные группы СООН, их различают по строению углеводородного остатка, по числу карбоксилов, наличию дополнительных функциональных групп (гидроксильных ОН, аминных NН>2> и др.). Обладают слабыми кислотными свойствами.
Предельные (насыщенные) карбоновые кислоты – соединения, в молекулах которых карбоксильные группы связаны с радикалами предельных или циклических углеводородов, например СН>3>СООН – уксусная кислота. В непредельных (ненасыщенных) кислотах карбоксильные группы связаны с остатками, содержащими одну или более двойных или тройных связей: СН>2> = СООН – акриловая, НС = С – СООН – пропаргиловая кислота; а в ароматических кислотах – с радикалами ароматических соединений, например:
Когда в углеродных остатках карбоновых кислот присутствуют другие функциональные группы, их наименование входит в названия кислот. Так, содержащие гидроксильную группу кислоты называются оксикислотами (СН>2>ОН-СНОН-СООН – глицериновая), аминогруппу – аминокислотами
(Н>2>N – СН>2> – СООН), альдегидную группу – альдегидокислотами и т.д.
Р
азнообразие
функциональных групп и их различное
расположение в углеводородных остатках
являются причиной разнообразия как
физических, так и химических свойств
кислот.
Несмотря на то, что карбоновые кислоты относятся к слабым кислотам, различие в их кислотности может быть очень велико. Так, трихлоруксусная кислота С>13>С – СООН в 700 раз сильнее уксусной СН>3> – СООН. Ароматические кислоты, как правило, сильнее алифатических, а дикислоты с близко расположенными карбоксилами (НООС-СООН – щавелевая, НООССН>2>СООН - малоновая) намного сильнее монокарбоновых кислот.
Карбоновые кислоты образуются при окислении альдегидов:
Эта реакция протекает очень легко, и при окислении спиртов часто сразу получают кислоты, а не альдегиды:
СН>3>СН>2>ОН + О>2> СН>3>СООН + Н>2>О
Гидроксильные группы в карбоксиле могут замещаться на другие остатки с образованием производных карбоновых кислот:
сложный эфир
а
мид
Если для реакции вместо монокислоты (одноосновной) взять дикислоту (двухосновную), а вместо спирта и амина – двухатомный спирт и диамин, то могут быть получены полимеры, в том числе полиэфиры, на основе которых получают синтетические волокна.
Производные многих карбоновых кислот, особенно алифатических, содержатся в таких природных соединениях, как жиры и белки. Следовательно, карбоновые кислоты и их производные играют важную роль в физиологии животных и растений. Эти вещества широко используются также для получения лекарственных препаратов (салициловая кислота и ее производные), витаминов (аскорбиновая кислота – витамин С), моющих средств и т.д. [4]
Насыщенные монокарбоновые кислоты. Методы получения
Монокарбоновые кислоты получают окислением органических соединений, гидролизом галогенпроизводных, путем превращения металлорганических соединений. Промышленно важным методом является реакция карбонилирования спиртов, эфиров, галогенуглеродов. Известны также многие специфические методы получения карбоновых кислот.
Приведенная ниже упрощенная схема хорошо иллюстрирует генетическую связь между углеводородами, галогенпроизводными, спиртами, альдегидами и карбоновыми кислотами:
1. Реакция окисления. Конечным продуктом окисления многих органических соединений являются карбоновые кислоты. Для окисления используют как кислород (воздух) в присутствии катализаторов (соли Со, Мn), так и другие неорганические (Н>2>О>2>, СrО>3>, КМnО>4>, МnО>2>, Н>2>О>2>, О>2>) и органические (пероксикарбоновые кислоты, гидропероксиды) окислители. Реакции рассмотрены в предыдущих главах.
2
.
Реакции гидролиза. Карбоновые
кислоты обычно получают гидролизом
соединений, содержащих трихлорметильную
группу и цианогруппу (нитрилы), иногда
гидролизом сложных эфиров и амидов:
Металлорганический синтез. Активные металлорганические соединения реагируют с СО2 и образуют карбоксилаты – соли карбоновых кислот:
(Х = ОН, галоген, ОR, ООСR>1>).
В качестве катализаторов применяют карбонилы кобальта НСo(СО)>4> и родия Рh(CO)L>3>, Rh(CO>2>)L>2>, температура реакции 100-200 С, давление от атмосферного (0,1 МПа) до 20 МПа (200 атм). Карбонилы родия являются более эффективными.
В присутствии катализатора происходит алкилирование молекул оксида углерода СО.
А
лкены
в этих условиях также дают карбоновые
кислоты. При карбонилировании алкенов
в присутствии водорода получаются
альдегиды
Реакции карбонилирования являются промышленными способами получения ряда кислот. Для получения карбоновых кислот применяются также ряд специфических методов. Карбоновые кислоты образуются при гидролизе сложных эфиров и амидов, полученных специфическими реакциями (например, окисление кетонов по Байеру – Виллигеру, реакция Тищенко, перегруппировка Бекмана).
Физические свойства и строение
Насыщенные монокарбоновые кислоты представляют собой бесцветные жидкие или кристаллические вещества с острым своеобразным запахом, высшие карбоновые кислоты (С>15> – С>13>) имеют слабый запах стеарина. Они имеют весьма высокие температуры кипения, что свидетельствует о значительной межмолекулярной ассоциации.
Таблица 1. Физические константы некоторых насыщенных монокарбоновых кислот
Соединение |
Т.пл.С |
Т. кип., С |
d |
НСООН |
8,4 |
100,7 |
1,22 |
СН>3>СООН |
16,6 |
118,1 |
1,049 |
СН>3>СН>2>СООН |
-22,4 |
141,1 |
0,992 |
СН>3>СН>2>СН>2>СООН |
-7,9 |
163,5 |
0,959 |
СН>3>СН(СН>3>)СООН |
-47 |
154,5 |
0,949 |
СН>3>СН>2>СН>2>СН>2>СООН |
-34,5 |
187 |
0,942 |
СН>3>СН(СН>3>)СН>2>СООН |
-37,6 |
176,7 |
0,937(15 С) |
СН>3>(СН>2>)>14>СООН |
64 |
271(13,3 кПа) |
0,853(62 С) |
СН>3>(СН>2>)>16>СООН |
69,4 |
291(13,3 кПа) |
0,847(69 С) |
в
следствие
образования межмолекулярных водородных
связей, причем образуются как циклические
димеры, так и линейные олигомеры:
Электронографическое изучение карбоновых кислот показало, что в их молекуле имеются карбонильная и гидроксильная группы, при этом связь С=О длиннее, чем в кетонах, а связь С-О короче, чем в спиртах. Это свидетельствует о взаимодействии электронных систем атома кислорода и С=О - группы:
Неподеленная пара электронов кислородного атома гидроксильной
группы взаимодействует с -электронами карбонильной группы, поэтому проявляет донорный эффект (+М). Это увеличивает полярность связи О-Н , но в то же время в некоторой степени уменьшает положительный
заряд по сравнению с
карбонильными соединениями на углеродном
атоме. Одновременно действует
электроно-акцепторный индуктивный
эффект (
-1)
кислородных атомов.
Следовательно, в карбоксильной группе имеются сильно поляризованные положительно водородный атом и углеродный атом, которые являются электрофильными центрами, и неподеленные электронные пары двух кислородных атомов, которые являются нуклеофильными центрами. Предполагают, что кислородный атом карбонильной группы имеет более нуклеофильный характер. [6]
Химические свойства.
Для монокарбоновых кислот характерна многосторонняя реакционная способность. Главным образом это определяется реакциями карбоксильной группы (отщепление и присоединение протона, нуклеофильные реакции у карбонильной группы):
НO
RСCЭлектрофилы
OH
ННуклеофилы Известны также реакции замещения углеродного атома. Возможен термический разрыв связей (декарбоксилирование, образование кетенов) и другого типа разрушения карбоксильной группы.
Кислотность и основность. Карбоновые кислоты обладают кислыми свойствами, что и отражено в названии. В растворах происходит ионизация с образованием сольватированного протона и аниона – карбоксилот-иона:
O:O: 1/2
R - C+ : SolR - C+ HSol+
OHO: 1/2
Карбоксилат-ион построен симметрично и имеет систему сопряженных связей. Обычно его изображают проще:
илиR – COO -
В строении карбоксилат-иона много общего со строением нитрогруппы.
Ниже приведены константы ионизации некоторых карбоновых кислот в водный растворах в единицах рКа (Н2О, 25С)
Кислота |
pKa |
Кислота |
pKa |
НСООНСН>3>СООН СН>3>СН>2>СООН СН>3>СН>2>СН>2>СООН |
3, 75 4, 76 4, 87 4, 82 |
(СH>3>)>3>ССООН
|
5, 03 4, 83 4, 90 |
Наиболее сильной из монокарбоновых кислот является муравьиная. Введение алкильных групп уменьшает кислотность, что объясняется электронодонорным действием алкильных групп.
В водных растворах соли карбоновых кислот чистично гидролизуются:
RCOO – Na + H3O RCOOH + Na + OH
Для названия солей карбоновых кислот применяют ривиальные латинские названия кислот. Если таких названий нет, используют названия с суффиксом-карбоксилат.
Таблица 2 Примеры номенклатуры солей карбоновых кислот
Карбоксилат |
Название солей |
СН3СОО-М+Ацетаты
СН3СН2СОО-М+Пропионаты
СН3СН2СН2СОО-М+Бутираты
СН3СН(СН3)СОО-М+Изобутираты
СН3СН2СН2СН2СОО-М+Валераты
(СН3)3ССОО-М+Пивалаты
Циклогексанкарбоксилаты
В кислой среде (рН меньше 3) ионизация кислот практически не происходит, а может осуществиться присоединение протона к карбонильной группе:
OO . . . H SO4O - H
R - C+ H HSO4 RC R - C + HSO4
O - H O - HO - H
Вначале образуются прочные водородные связи, но при увеличении кислотности среды растет концентрация протонированной карбоновой кислоты.
Образование водородной связи и тем более протонированой формы значительно увеличивает положительный заряд на углеродном атоме карбонильной группы и электрофильность этой группы. Это можно изобразить при помощи резонансных структур:
O - HO - HO - H
R - CR - CR - C
O - HO - HO -H
В протонированной форме оба кислородных атома фактически становятся одинаковыми:
O - H
R - C(2b + 2b + b = 1)
O - H
Основность карбоновых кислот (рКвн+ = -6) сравнима с основностью кетонов (рКвн+= -6. . . –8), но значительно ниже основности простых эфиров (рКвн+ = -2. . . –4).
Так, в растворе 1 моль/л серной кислоты концентрация протонированой формы карбоновой кислоты не превышает 0,001 %, а в растворе 70%-ной серой кислоты протонировано около 50% карбоновой кислоты.
Несмотря на малую концентрацию протонированой формы, присутствие небольших количеств сильных кислот исключительным образом влияет на реакционную способность карбоновых кислот (образование сложных эфиров и др.). Очевидно, большую роль играет также образование водородной связи. [7]
Важнейшие представители. Муравьиная кислота – бесцветная едкая жидкость с острым запахом, смешивающаяся с водой. Впервые выделена в ХУП в. из красных муравьев перегонкой с водяным паром. В природе встречается в свободном состоянии также в крапиве.
Муравьиная кислота - надежное оружие рыжих муравьев. Ядовитая железа такого муравья содержит от 20 до 70% муравьиной кислоты, это главный компонент его «оборонного средства». Именно им муравьи парализуют добычу. Муравьиная кислота встречается также в некоторых растениях, в частности в жгучей крапиве. [8]
Источники накопления муравьиной кислоты в атмосфере- выхлопные газы автомобилей и различные промышленные дымы, претерпевающие химические превращения под действием солнечных лучей.
Получают муравьиную кислоту из гидроксида натрия и оксида углерода нагреванием под давлением:
100 - 105 CH>2>SO>4>
Na + OH + COНСОО – Na +HCOOH
0,5 - 1, 0МПа
Оксид углерода и спирты в присутствии алкоксидов образуют сложные эфиры муравьиной кислоты:
RO - Na + , 80 oC
CO + ROH НСООR
3, 0 МПа
М
уравьиная
кислота в отличие от других карбоновых
кислот содержит атом водорода у
углеродного атома, формально группу Н
– С в молекуле муравьиной кислоты можно
рассматривать как альдегидную группу.
Вследствие этого муравьиная кислота
обладает восстанавливающими свойствами,
при действии окислителей превращается
в СО>2> и Н=О:
Своеобразной реакцией муравьиной кислоты является распад на СО и Н2О при взаимодействии с концентрированной серной кислотой:
Муравьиная кислота широко используется в органическом синтезе, например для получения формамида, диметилформамида, щавелевой кислоты. [9]
Уксусная кислота – одно из первых органических соединений, которое было выделено в относительно чистом виде и описано уже в ХI в. алхимиками как продукт перегонки натурального уксуса. В 1845 г. немецкий химик А.Кольбе осуществил ее синтез. Водный раствор этой кислоты известен как столовый уксус. Безводная уксусная кислота затвердевает при температуре = 17 С. Ее часто называют «ледяной» уксусной кислотой. Метод приготовления ледяной уксусной кислоты, вошедший в Российскую фармакопею, был разработан в 1784г.
Уксусная кислота представляет собой бесцветную жидкость с острым запахом и кислым вкусом, неограниченно смешивающуюся с водой. Безводную уксусную кислоту называют «ледяной», так как при 16 С на замерзает и образует кристаллы, подобные льду. Обычная уксусная кислота, содержащая 2-3% воды, замерзает при температуре ниже 13 С.
Уксусная кислота известна издавна. Ее разбавленные водные растворы образуются при брожении вина. При перегонке водных растворов получают приблизительно 80%-ную кислоту («уксусную эссенцию»), которую применяют для пищевых целей.
Синтетическую уксусную кислоту для нужд химической промышленности получают различными методами. Один из методов заключается в окислении уксусного альдегида, который, в свою очередь, получают из этилена окислением в присутствии РdСl>2> или из ацетилена:
РdCl2; CuCl2OН2О; Кат.
СН2 = СН2CH3CНС = СН
H2O; O2H
O2; Кат.
Кат.: t0О2; Кат.
СН3ОН + СОСН3СООНСН3СН2СН2СН3
Второй метод заключается в карбонилировании метанола. Третий метод – каталитическое окисление бутана.
Уксусную кислоту используют в качестве растворителя и как исходное вещество для синтеза производных уксусной кислоты (ацетилхлорида, ацетангидрида, амидов, сложных эфиров). Соли уксусной кислоты (ацетаты) применяют в текстильной промышленности в качестве протравителей и в синтезе как основные катализаторы. [3]
Масляная кислота - бесцветная жидкость с острым запахом, при большом разбавлении для нее характерен неприятный запах старого сливочного масла и пота. Масляная кислота встречается в природе в виде сложных эфиров; эфиры глицерина и масляной кислоты входят в состав жиров и сливочного масла. Масляную кислоту получают окислением бутанола-1 или карбонилированием пропанола-1. Используют в органическом синтезе для получения ароматных сложных эфиров. Изовалериановая кислота – бесцветная жидкость с острым запахом, в разбавленном виде имеет своеобразный запах валерианы. Встречается в природе в корнях валерианы. Синтетически ее получают окислением изоамилового спирта или карбонилированием изобутилового спирта. Используют в синтезе лекарственных веществ и ароматных эссенций.
Пальмитиновая кислота представляет собой бесцветное кристаллическое вещество со слабым запахом стеарина, в воде не растворяется. Широко распространена в природе, в виде сложных эфиров с глицерином входит в состав жиров.
Получают пальмитиновую кислоту обработкой жиров щелочью (гидролиз, омыление). При этом образуются соли (пальмитаты), после подкисления которых осаждается сама кислота.
Пальмитиновая кислота и ее производные используются в качестве поверхностно-активных веществ (моющих средств и др.). Ее натриевая соль называется мылом.
Стеариновая кислота – бесцветное кристаллическое вещество со слабым запахом стеарина. Ее эфиры с глицерином входят в состав жиров.
Получают стеариновую кислоту омылением жиров. Обычно образуется смесь стеариновой и пальметиновой кислот, которую можно разделить на составные части. Стеариновую кислоту в смеси с пальметиновой используют в производстве свечей, их натриевые соли являются обыкновенным мылом. В органическом синтезе стеариновую кислоту используют для получения других поверхностно-активных веществ.
Производные пальметиновой и стеариновой кислот принадлежат к важным природным веществам – липидам.
Циклогексанкарбоновая кислота – бесцветное кристаллическое вещество с запахом пота, т.пл. 31 С, т. кип. 233 С.
Получают ее каталитическим гидрированием бензойной кислоты. [8]
3. ПРИМЕРЫ ПРОБЛЕМНЫХ СИТУАЦИЙ И ИХ РЕШЕНИЕ
Проблемные ситуации при изучении предельных одноосновные кислоты можно рассмотреть через систему уроков по теме: «Карбоновые кислоты».
УРОК 1. Карбоновые кислоты, их классификация.
Краткое содержание. Строение карбоксильной группы. Классификация карбоновых кислот. Предельные одноосновные карбоновые кислоты: гомология, изомерия, номенклатура.
Элементы обязательного минимума содержания образования. Предельные одноосновные карбоновые кислоты. Электронное строение карбоксильной группы. Гомологи карбоновых кислот. Водородная связь.
Требования. Называть карбоновые кислоты по формулам. Называть функциональную группу карбоновых кислот. Определять наличие водородной связи между молекулами органических веществ. Называть изомеры и гомологи карбоновых кислот. Изготавливать молекулы уксусной кислоты.
Измерители. Составить структурные формулы изомеров пентановой кислоты, назвать карбоновые кислоты.
Домашнее задание: № 30 (стр.141-144).
Урок 2. Химические свойства предельных одноосновных карбоновых кислот. Особые свойства муравьиной кислоты.
Элементы обязательного минимума содержания образования. Предельные одноосновные карбоновые кислоты. Реакция этерификации.
Требования. Характеризовать химические свойства карбоновых кислот. Составлять уравнения реакций, подтверждающих свойства карбоновых кислот. Объяснять зависимость свойств карбоновых кислот от строения функциональной группы.
Измерители. Написать уравнения реакций между уксусной кислотой и карбонатом натрия, гидроксидом кальция, метанолом, хлором (при освещении). Составить уравнение реакции окисления метановой кислоты оксидом серебра.
Домашнее задание. № 30 (стр.144-146),31 (стр.147-148). Упр. 14,15,20.
Урок 3. Представители карбоновых кислот.
Краткое содержание. Высшие предельные и непредельные кислоты. Бензойная кислота. Понятия о мылах.
Требования. Характеризовать химические свойства карбоновых кислот. Составлять уравнения реакций, подтверждающих свойства карбоновых кислот. Объяснять зависимость свойств карбоновых кислот от строения функциональной группы.
Измерители. Написать уравнения реакций между пальмитиновой кислотой и гидроксидом натрия, олеиновой кислотой и бромом.
Домашнее задание. №31 (ст.149-152). Упр.24,26,28.
Урок 4. Получение и применение карбоновых кислот.
Элемент обязательного минимума содержания образования. Карбоновые кислоты.
Требования. Составлять уравнения реакций, подтверждающих генетические связи органических веществ.
Измерители. Осуществить превращения:
Метан--- ацетилен---этаналь
Хлорметан------------уксусная кислота
Этан--------------------бутан
Домашнее задание. № 31(с.148-149). Упр.13,21.
Урок 5. Практическая работа 2. Получение и изучение свойств карбоновых кислот.
Элементы обязательного минимума содержания образования. Правила работы с веществами и оборудованием. Сведения о токсичности изучаемых веществ.
Требования. Составлять план решения экспериментальных задач. Проводить опыты по получению, собиранию и изучению свойств органических веществ. Составлять отчет о практической работе. [21]
ВЫВОД
Развитие учащихся в процессе обучения химии — это часть проблемы, стоящей перед школой, — проблемы формирования всесторонне развитой личности. Для осуществления развивающего обучения химии в школе имеются все необходимые предпосылки: в дидактике и психологии разработаны его теоретические основы, в методике химии указаны средства его реализации. Задача методики — дать в руки учителя конкретные рекомендации по реализации принципов развивающего обучения в курсе химии средней школы.
Развивающее обучение химии — одна из актуальных проблем современной методики. Средствами развития учащихся в обучении химии являются система содержания и активный характер учебного процесса, обеспечивающийся разными путями, в том числе проблемным обучением.
Проблемное обучение — важнейшее средство развития учащихся. Методика проблемного обучения определяется содержанием предмета и познавательными возможностями учащихся.
Проблемное обучение, как и учебный процесс в целом, обладает свойством системности. Проблемы могут быть поставлены при установлении связей между структурными элементами содержания, а также при использовании принципа историзма.
Главным этапом в проблемном обучении является создание проблемной ситуации разными способами. При проблемном обучении меняется методика ведения урока учителем, который должен обладать умением вести дискуссию на уроке.
ЛИТЕРАТУРА
Зайцев О.С. «Современный краткий курс» М., «Просвещение» 1997г.
Потапов В.М. «Строение и свойство органических веществ» М., «Просвещение» 1984г.
Журнал «Химия в школе» №5 2002г.
Энциклопедический словарь М., «Педагогика» 1990г.
Нейланд О.Я. «Органическая химия» М., 1990г.
Чертков И.Н. «Методика формирования у учащихся основ современных понятий органической химии» М., 1990г.
Иванова Р.Г., Осокина Г.Н. «Изучение химии в 10 – 11 кл.» М., «Просвещение» 1983г.
Несмеянов А. Н. , Несмеянов Н. А. «Органическая химия», в 2-х томах. М. 1992 г.
Кокарёв Б.Н. «Любознательным о химии» Органическая химия М., 1982г.
Журнал «Химия в школе» №3 1998 г.
Барле Р., Пьер Ж.Л. Пособие для изучающих органическую химию. М. 1971 г.
Васюченко С.И. Химия М., «Высшая школа» 1966 г.
Юлиус Ф. Мир веществ и обучение химии. Пер. с нем. М. – 1995 г.
Гауптман З. Органическая химия. М. – 1987 г.
Журнал «Химия в школе» №4 2001 г.
Журнал «Химия в школе» №3 2002 г.
Цветков Л.А. «Преподавание органической химии в средней школе» 1984 г.
Цветков Л.А. «Эксперимент в средней школе по органической химии» М., «Школьная пресса» 2000 г.
Рудзитис Г.Е. Фельдман Ф.Г. «Органическая химия» Учебник для 10 кл. М., «Просвещение» 1995 г.
Журнал «Химия в школе» №5 2000 г.