Экологические группы растений по отношению к температуре
1
ТЕМА КУРСОВОЙ.
ЭКОЛОГИЧЕСКИЕ ГРУППЫ РАСТЕНИЙ ПО ОТНОШЕНИЮ К ТЕМПЕРАТУРЕ
Содержание
Введение 2
ГЛАВА 1. Температура как экологический фактор 4
ГЛАВА 2. Температура растений 6
ГЛАВА 3. Действие температурного стресса 11
3.1. Картина повреждения 11
3.2 .Причины гибели при перегреве 12
3.3. Гибель от охлаждения и от мороза 12
3.4. Термоустойчивость 13
3.5. Устойчивость протоплазмы 14
ГЛАВА 4. Растения и высокая температура 17
4.1. Жароустойчивость 22
4.2. Нежаростойкие виды 22
4.3. Жаровыносливые эукариоты 23
4.4. Жароустойчивые прокариоты 23
ГЛАВА 5. Влияние холода на растения и приспособления к нему 24
5.1. Нехолодостойкие растения 35
5.2. Неморозостойкие растения 35
5.3. Льдоустойчивые растения 35
Заключение 36
Литература 37
ВВЕДЕНИЕ
Приспособленность онтогенеза растений к условиям среды является результатом их эволюционного развития (изменчивости, наследственности, отбора). На протяжении филогенеза каждого вида растений в процессе эволюции выработались определенные потребности индивидуума к условиям существования и приспособленность к занимаемой им экологической нише. Жароустойчивость, холодоустойчивость и другие экологические особенности конкретных видов растений сформировались в ходе эволюции в результате длительного действия соответствующих условий. Так, теплолюбивые растения и растения короткого дня характерны для южных широт, менее требовательные к теплу и растения длинного дня - для северных.
В природе в одном географическом регионе каждый вид растений занимает экологическую нишу, соответствующую его биологическим особенностям. Наследственность растений формируется под влиянием определенных условий внешней среды. Важное значение имеют и внешние условия онтогенеза растений.
В большинстве случаев растения и посевы (посадки) сельскохозяйственных культур, испытывая действие тех или иных неблагоприятных факторов, проявляют устойчивость к ним как результат приспособления к условиям существования, сложившимся исторически, что отмечал еще К. А. Тимирязев.
Все физиологические и биохимические процессы идут лишь в определенных температурных границах, которые обычно лежат в довольно узких пределах. Фактор тепла имеет большое значение и в географическом распределении растений. Составляя существенную часть климатических условий, он тем самым определяет северные и южные границы ареалов, зональную структуру растительного покрова.
Цель: выявить основные типы отношений растений к температуре, способы адаптаций
Задачи: 1 охарактеризовать тепловые
условия местообитаний
2 охарактеризовать
собственную температуру растения
3
определить последствия температурного
стресса
4 рассмотреть различные виды
адаптаций к высоким и низким температурам
ГЛАВА 1. ТЕМПЕРАТУРА КАК ЭКОЛОГИЧЕСКИЙ ФАКТОР
Растения — пойкилотермные организмы, т. е. их собственная температура уравнивается с температурой окружающей их среды. Однако это соответствие неполное. Конечно, тепло, выделяемое при дыхании и используемое при синтезах, вряд ли играет какую-либо экологическую роль, но все же температура надземных частей растения может значительно отличаться от температуры воздуха в результате энергообмена с окружающей средой. Благодаря этому, например, растения Арктики и высокогорий, которые заселяют места, защищенные от ветра, или растут вплотную к почве, имеют более благоприятный тепловой режим и могут достаточно активно поддерживать обмен веществ и рост, несмотря на постоянно низкие температуры воздуха. Не только отдельные растения и их части, но и целые фитоценозы обнаруживают иногда характерные отклонения от температуры воздуха. В один жаркий летний день в Центральной Европе температура на поверхности крон в лесах была на 4°С, а лугов — на 6 °С выше температуры воздуха и на 8 °С (лес) или 6 °С (луг) ниже, чем температура поверхности почвы, лишенной растительности.
Чтобы охарактеризовать тепловые условия местообитания растений, необходимо знать закономерности распределения тепла в пространстве и его динамику во времени как в отношении общеклиматических характеристик, так и конкретных условий произрастания растений.
Общее представление об обеспеченности того или иного района теплом дают такие общеклиматические показатели, как среднегодовая температура для данной местности, абсолютный максимум и абсолютный минимум (т. е. наиболее высокая и наиболее низкая температура, зарегистрированная в этом районе), средняя температура самого теплого месяца (на большей части северного полушария это июль, южного полушария - январь, на островах и в прибрежных районах — август и февраль); средняя температура самого холодного месяца (в континентальных областях северного полушария - январь, южного — июль, в прибрежных районах - февраль и август).
Для характеристики тепловых условий жизни растений важно знать не только общее количество тепла, но и его распределение во времени, от которого зависят возможности вегетационного периода. Годовую динамику тепла хорошо отражает ход среднемесячных (или среднесуточных) температур, неодинаковый на разных широтах и при разных типах климата, а также динамика максимальных и минимальных температур. Границы вегетационного сезона определяются продолжительностью безморозного периода, частотой и степенью вероятности весенних и осенних заморозков. Естественно, порог вегетации не может быть одинаковым для растений с разным отношением к теплу; для холодостойких культурных видов условно принимают 5°С, для большинства культур умеренной зоны 10°С, для теплолюбивых 15°С. Считают, что для естественной растительности умеренных широт пороговая температура начала весенних явлений составляет 5°С.
В общих чертах скорость сезонного развития пропорциональна накопленной сумме температур (стоит, например, сравнить медленное развитие растений в холодную и затяжную весну или «взрывное» начало весны при сильной волне тепла). От этой общей закономерности есть ряд отступлений: так, например, слишком высокие суммы температур уже не ускоряют, а тормозят развитие.
ГЛАВА 2. ТЕМПЕРАТУРА РАСТЕНИЙ
Наряду с тепловыми характеристиками окружающей среды необходимо знать температуру самих растений и ее изменения, поскольку именно она представляет истинный температурный фон для физиологических процессов. Температуру растений измеряют с помощью электротермометров, имеющих миниатюрные полупроводниковые датчики. Чтобы датчик не повлиял на температуру измеряемого органа, необходимо, чтобы его масса была во много раз меньше массы органа. Датчик должен быть также малоинерционным и быстро реагировать на изменения температуры. Иногда для этой цели используют термопары. Датчики или прикладывают к поверхности растения, или «вживляют» в стебли, листья, под кору (например, для измерения температуры камбия). Одновременно обязательно измеряют температуру окружающего воздуха (затенив датчик).
Температура растений весьма непостоянна. Из-за турбулентных потоков и непрерывных изменений температуры воздуха, непосредственно окружающего лист, действия ветра и т. д. температура растения варьирует с размахом в несколько десятых долей или даже целых градусов и с частотой в несколько секунд. Поэтому под «температурой растений» следует понимать более или менее обобщенную и в достаточной мере условную величину, характеризующую общий уровень нагрева. Растения как пойкилотермные организмы не имеют собственной стабильной температуры тела. Их температура определяется тепловым балансом, т. е. соотношением поглощения и отдачи энергии. Эти величины зависят от многих свойств как окружающей среды (размеры прихода радиации, температура окружающего воздуха и его движение), так и самих растений (окраска и другие оптические свойства растения, величина и расположение листьев и т. д.). Первостепенную роль играет охлаждающее действие транспирации, которое препятствует очень сильным перегревам в жарких местообитаниях. Это легко показать в опытах с пустынными растениями: стоит лишь смазать вазелином ту поверхность листа, на которой расположены устьица, и лист на глазах гибнет от перегрева и ожогов.
В результате действия всех указанных причин температура растений обычно отличается (иногда довольно значительно) от температуры окружающего воздуха. При этом возможны три ситуации:
температура растения выше температуры окружающего воздуха («супратемпературные» растения, по терминологии О. Ланге),
ниже ее («субтемпературные»),
равна или очень близка к ней. Первая ситуация встречается довольно часто в самых разнообразных условиях. Значительное превышение температуры растения над температурой воздуха обычно наблюдается у массивных органов растений, особенно в жарких местообитаниях и при слабой транспирации. Сильно нагреваются крупные мясистые стебли кактусов, утолщенные листья молочаев, очитков, молодила, у которых испарение воды очень незначительное. Так, при температуре воздуха 40—45°С пустынные кактусы нагреваются до 55—60°С; в умеренных широтах в летние дни сочные листья растений из родов Sempervivum и Sedum нередко имеют температуру 45°С, а внутри розеток молодила — до 50°С. Таким образом, превышение температуры растения над температурой воздуха может достигать 20°С.
Сильно нагреваются солнцем различные мясистые плоды: например, спелые томаты и арбузы на 10—15°С теплее воздуха; температура красных плодов в зрелых початках аронника — Arum maculatum доходит до 50°С. Довольно заметно бывает повышение температуры внутри цветка с более или менее закрытым околоцветником, сохраняющим от рассеивания тепло, которое выделяется при дыхании. Иногда это явление может иметь существенное адаптивное значение, например, для цветков лесных эфемероидов (пролески, хохлатки и др.), ранней весной, когда температура воздуха едва превышает 0°С.
Своеобразен и температурный режим таких массивных образований, как древесные стволы. У одиночно стоящих деревьев, а также в лиственных лесах в «безлистную» фазу (весной и осенью) поверхность стволов сильно нагревается в дневные часы, причем в наибольшей степени с южной стороны; температура камбия здесь может быть на 10—20°С выше, чем на северной стороне, где она имеет температуру окружающего воздуха. В жаркие дни температура темных стволов ели повышается до 50—55°С, что может принести к ожогам камбия. Показания тонких термопар, вживленных под кору, позволили установить, что стволы древесных пород защищены по-разному: у березы температура камбия быстрее меняется в соответствии с колебаниями температуры наружного воздуха, в то время как у сосны она более постоянна благодаря лучшим теплозащитным свойствам коры. Нагревание стволов деревьев и безлистном весеннем лесу существенно влияет на микроклимат лесного сообщества, поскольку стволы — хорошие аккумуляторы тепла.
Превышение температуры растений над температурой воздуха встречается не только в сильно прогреваемых, но и в более холодных местообитаниях. Этому способствует темная окраска или иные оптические свойства растений, увеличивающие поглощение солнечной радиации, а также анатомо-морфологические особенности, способствующие снижению транспирации. Довольно заметно могут нагреваться арктические растения: один пример - карликовая ива — Salix arctica на Аляске, у которой днем листья теплее воздуха на 2—11°С и даже в ночные часы полярного «круглосуточного дня» — на 1—3°С. Ранневесенним эфемероидам «подснежникам» нагревание листьев обеспечивает возможность достаточно интенсивного фотосинтеза в солнечные, но еще холодные весенние дни. Даже под снегом (точнее под тонким слоем полупрозрачного фирна) темноокрашенные части зимующих альпийских и арктических растений нагреваются солнечными лучами. Это приводит к образованию полостей и «парничков» вокруг растений, к более быстрому растаиванию снежной корки над ними. Когда над поверхностью снега в высокогорьях Альп и Карпат появляются темно-сиреневые колокольчатые цветки сольданелл — Soldanella alpina, S. hungarica, создается впечатление, что растения пробивают снег, «растапливая его теплотой дыхания» (мнение, распространенное в старой научно-популярной литературе). На самом деле расчеты показывают, что эта теплота ничтожно мала. Еще один интересный пример нагревания под снегом: в летнее время в Антарктиде температура лишайников бывает выше 0°С даже под слоем снега более 30 см. Очевидно, в столь суровых условиях естественный отбор сохранил формы с наиболее темной окраской, у которых благодаря такому нагреванию возможен положительный баланс углекислотного газообмена.
Довольно значительно могут нагреваться солнечными лучами иглы хвойных древесных пород зимой: даже при отрицательных температурах возможно превышение над температурой воздуха на 9—12°С, что создает благоприятные возможности для зимнего фотосинтеза. Экспериментально было показано, что если для растений создать сильный поток радиации, то даже при низкой температуре порядка —5, —6°С листья могут нагреться до 17—19°С, т. е. фотосинтезировать при вполне «летних» температурах.
Для холодных местообитаний или сезонных экологических ниш повышение температуры растения экологически очень важно, так как физиологические процессы при этом получают независимость в известных пределах от окружающего теплового фона.
Снижение температуры растений по сравнению с окружающим воздухом чаще всего отмечается в сильно освещенных и прогреваемых местообитаниях (степях, пустынях), где листовая поверхность растений сильно редуцирована (см. ниже), а усиленная транспирация способствует удалению избытка тепла и предотвращает перегрев (напомним, что для испарения 1 г воды при 20°С требуется 2438 Дж — 582 кал). Недаром иногда говорят о «гидротерморегуляции» растений. У интенсивно транспирирующих видов охлаждение листьев (разность с температурой воздуха) достигает 15°С. Это крайний пример, но и снижение на 3—4°С может предохранить от губительного перегрева.
В самых общих чертах можно сказать, что в жарких местообитаниях температура надземных частей растений ниже, а в холодных— выше температуры воздуха. Эта закономерность прослеживается и на одних и тех же видах: так, в холодном поясе гор Северной Америки, на высотах 3000—3500 м, растения теплее, а в низкогорном — холоднее воздуха.
Совпадение температуры растений с температурой окружающего воздуха встречается гораздо реже в условиях, исключающих сильный приток радиации и интенсивную транспирацию, например у травянистых растений под пологом тенистых лесов (но не на солнечных бликах), а на открытых местообитаниях — в пасмурную погоду или при дожде.
В целом, по мнению многих авторов, совпадение температуры растения и среды является исключением, а несовпадение — правилом, в связи с чем иногда говорят — с большой долей условности даже о «собственном микроклимате растений».
Различают разные экологические типы растений по отношению к температуре. У растений термофильных, или мегатермных (теплолюбивых), оптимум лежит в области повышенных температур. Они обитают в областях тропического и субтропического климата, а в умеренных поясах — в сильнопрогреваемых местообитаниях. Для криофильных,или микротермных (холодолюбивых), растений оптимальны низкие температуры. К ним принадлежат виды, живущие в полярных и высокогорных областях или занимающие холодные экологические ниши. Иногда выделяют промежуточную группу мезотермных растений.
ГЛАВА 3. ДЕЙСТВИЕ ТЕМПЕРАТУРНОГО СТРЕССА
Жара и мороз вредят жизненным функциям и ограничивают распространение вида в зависимости от их интенсивности, продолжительности и периодичности, но прежде всего от состояния активности и степени закалки растений. Стресс-—это всегда необычная нагрузка, которая не обязательно должна быть опасной для жизни, но которая непременно вызывает в организме «реакцию тревоги», если только он не находится в выраженном состоянии оцепенения. Покоящиеся стадии, такие, как сухие споры, а также пойкилогидрические растения в высохшем состоянии, нечувствительны, так что они могут пережить без повреждения любую отмеченную на Земле температуру.
Протоплазма вначале отвечает на стресс резким усилением метаболизма. Повышение интенсивности дыхания, которое наблюдается в качестве стрессовой реакции отражает попытку исправить уже появившиеся дефекты и создать ультраструктурные предпосылки для приспособления к новой ситуации. Стрессовая реакция — это борьба механизмов адаптации, с деструктивными процессами в протоплазме, ведущими к ее гибели.
Гибель клеток от перегрева и холода. Если температура переходит критическую точку, клеточные структуры и функции могут повреждаться так внезапно, что протоплазма тотчас же отмирает. В природе такое внезапное разрушение нередко происходит при эпизодических морозах, например при поздних заморозках весной. Но повреждения могут возникать и постепенно; отдельные жизненные функции выводятся из равновесия и угнетаются, пока, наконец, клетка не отомрет в результате прекращения жизненноважных процессов.
3.1. Картина повреждения
Различные жизненные процессы неодинаково чувствительны к температуре. Сначала прекращается движение протоплазмы, интенсивность которого непосредственно зависит от энергоснабжения за счет процессов дыхания и от наличия высокоэнергетических фосфатов. Затем снижаются фотосинтез и дыхание. Для фотосинтеза особенно опасна жара, дыхание же наиболее чувствительно к холоду. У поврежденных холодом или жарой растений после возвращения в умеренные условия уровень дыхания сильно колеблется и часто бывает ненормально повышен. Повреждение хлоропластов ведет к длительному или необратимому угнетению фотосинтеза. В конечной стадии утрачивается полупроницаемость биомембран, разрушаются клеточные компартменты, особенно тилакоиды пластид, и клеточный сок выходит в межклетники..
3.2. Причины гибели при перегреве
Высокая температура быстро приводит к гибели из-за повреждения мембран и прежде всего в результате инактивации и денатурации белков. Даже если из строя выходят только немногие, особо термолабильные ферменты, это ведет к расстройству обмена нуклеиновых кислот и белков и в конце концов — тоже к гибели клеток. Растворимые азотистые соединения накапливаются при этом в таких больших концентрациях, что они диффундируют из клеток и теряются; кроме того, образуются ядовитые продукты распада, которые не могут больше обезвреживаться в ходе обмена веществ.
3.3. Гибель от охлаждения и от мороза
При повреждении протоплазмы холодом следует различать, вызвано ли оно самой по себе низкой температурой или же замерзанием. Некоторые растения тропического происхождения повреждаются уже при снижении температуры до нескольких градусов выше нуля. Подобно гибели от перегрева, гибель от охлаждения тоже бывает прежде всего связана с дезорганизацией обмена нуклеиновых кислот и белков, но здесь играют роль также нарушения, проницаемости и прекращение тока ассимилятов.
Растения, которым охлаждение до температур выше нуля не причиняет вреда, повреждаются только при температурах ниже нуля, т. е. в результате образования льда в тканях. Богатые водой, незакаленные протопласты могут легко замерзать; при этом внутри клетки мгновенно образуются ледяные кристаллики, и клетка погибает. Чаще всего лед образуется не в протопластах, а в межклетниках и клеточных стенках. Такое образование льда называют внеклеточным. Выкристаллизовавшийся лед действует как сухой воздух, так как упругость пара надо льдом ниже, чем над переохлажденным раствором. В результате от протопластов отнимается вода, они сильно сжимаются (на 2/з своего объема) и концентрация растворенных веществ в них возрастает. Перемещение воды и замерзание продолжаются до тех пор, пока в протоплазме не установится равновесие сосущих сил между льдом и водой. Положение равновесия зависит от температуры; при температуре —5°С равновесие наступает примерно при; 60 бар, а при —10°С — уже при 120 -бар. Таким образом, низкие температуры действуют на протоплазму так же, как высыхание. Морозоустойчивость клетки более высока, если вода прочно связана со структурами протоплазмы и осмотически связана. При обезвоживании цитоплазмы (безразлично, в результате засухи или замерзания) инактивируются ферментные системы, ассоциированные с мембранами, - системы, участвующие главным образом в синтезе АТФ и в процессах фосфорилирования (Хебер, Сантариус, 1979). Инактивацию, вызывают чрезмерные и потому токсичные концентрации ионов. солей и органических кислот в незамерзшем остаточном растворе. Напротив, сахара, производные сахаров, определенные аминокислоты и белки защищают биомембраны и ферменты от вредных веществ (Максимов, Туманов, Красавцев, 1952). Наряду с этим есть указания на то, что при замерзании белки денатурируются, что также ведет к повреждению мембран (Левитт 1980).
3.4. Термоустойчивость
Термоустойчивость — это способность организма переносить большую жару или холод без необратимого повреждения. Термоустойчивость растения складывается из способности протоплазмы переносить экстремальные температуры (толерантность по Дж. Левитту) и из эффективности мер, которые замедляют или предотвращают развитие повреждений (избегание).
Меры, позволяющие избегать повреждения
Возможные способы защиты клеток от температурного повреждения немногочисленны и не очень эффективны. Изоляция от перегрева и охлаждения может дать лишь кратковременную защиту. Так. например, в густых кронах деревьев или у подушечных растений почки листья и цветки, находящиеся в глубине и ближе к земле, меньше подвергаются опасности замерзнуть в результате отдачи тепла путем излучения, чем наружные части растения. Виды хвойных с особенно толстой коркой лучше выдерживают пожары в подлеске. Общее же значение имеют главным образом две защитные меры: замедление образования льда в тканях и (при жаре) охлаждение путем отражения падающих лучей и с помощью транспирации.
3.5. Устойчивость протоплазмы
Длительное и регулярно повторяющееся воздействие крайних. температур растения могут выдерживать только в том случае, если сама протоплазма жаро- или морозоустойчива. Эта особенность обусловлена генетически и поэтому у разных видов и даже сортов выражена в разной степени. Однако это не такое свойство, которое присуще растению постоянно и всегда в одинаковой мере. Проростки, весенние побеги древесных растений в период их интенсивного растяжения, культуры микроорганизмов в фазе экспоненциального роста вряд ли способны закаливаться и поэтому чрезвычайно чувствительны к температуре.
Устойчивость к образованию льда и закаливание к действию мороза. В областях с сезонным климатом наземные растения приобретают осенью «льдоустойчивость», т. е. способность переносить образование льда в тканях. Весной, с распусканием почек они снова утрачивают эту способность, и теперь замерзание приводит к их вымерзанию. Таким образом, холодостойкость многолетних растений вне тропиков регулярно колеблется в течение года между минимальной величиной в период вегетации и максимумом в зимнее время. Льдоустойчивость формируется постепенно осенью. Первая предпосылка для этого—переход растения в состояние готовности к закаливанию, наступающее только тогда, когда заканчивается рост. Если готовность к закаливанию достигнута, то процесс закаливания может начинаться. Этот процесс состоит из нескольких фаз, каждая из которых подготавливает переход к следующей. По теории, разработанной И.И. Тумановым, закаливание к морозу, у озимых злаков и плодовых; деревьев (эти растения изучались наиболее основательно) начинается многодневным (до нескольких недель) воздействием температур чуть выше нуля. На этой фазе, предшествующей закаливанию, в протоплазме накапливаются сахара и другие защитные вещества, клетки становятся беднее водой, а центральная вакуоль распадается на множество мелких вакуолей. Благодаря этому протоплазма оказывается подготовленной к следующей фазе, проходящей при регулярных слабых морозах от —3 до—5°С. При этом ультраструктуры и ферменты протоплазмы перестраиваются таким образом, что клетки переносят обезвоживание, связанное с образованием льда. Только после этого растения могут, не подвергаясь, опасности, вступать в заключительную фазу процесса; закаливания, которая при непрерывном морозе по меньшей мере от —10 до-—15 °С делает протоплазму в высшей степени морозоустойчивой.
Зоны эффективных температур для разных видов различны . Готовые к закаливанию сеянцы березы, которые до начала процесса закаливания вымерзали бы при температуре от —15-до —20°С, переносят после окончания первой фазы закаливания; уже —35 °С, а при полной закалке они выдерживают даже охлаждение до —195°С. Таким образом, холод сам по себе стимулирует процесс закаливания. Если мороз ослабевает, то протоплазма опять переходит в первую фазу закаливания, однако устойчивость, снова может быть поднята холодными периодами до наивысшего уровня, пока растения остаются в состоянии покоя.
.В зимний период на сезонный ход морозостойкости накладываются кратковременные (индуцированные), адаптации, благодаря которым уровень устойчивости быстро приспосабливается к изменениям погоды. Холод больше всего способствует закаливанию в начале зимы. В это время устойчивость может за несколько дней подняться до наивысшего уровня. Оттепель, особенно в конце зимы, вызывает быстрое снижение устойчивости растений, но в середине зимы после выдерживания в течение .нескольких дней при температуре от +10 до +20 °С растения в значительной мере теряют закалку. Способность изменять морозоустойчивость под влиянием холода и тепла, т. е. диапазон индуцируемых адаптации устойчивости, является конституционным признаком отдельных видов растений.
После окончания зимнего покоя способность к закаливанию и вместе с тем высокая степень закалки быстро утрачиваются. Весной существует тесная связь между активированием распускания почек и ходом изменения устойчивости.
ГЛАВА 4. РАСТЕНИЯ И ВЫСОКАЯ ТЕМПЕРАТУРА
Как уже указывалось, в открытых местообитаниях с сильной инсоляцией и высокими температурами надземные части растений (особенно слабо транспирирующих) могут нагреваться до 45 - 60°С. Нагревание напочвенных и наскальных лишайников достигает 60—65°С (иногда в течение довольно продолжительного времени). «Полюс жары» в растительном мире занимают растения термальных (горячих) источников Камчатки, Исландии, Йеллоустоунского парка в США и др. Наивысшая температура, при которой найдены живые сине-зеленые водоросли, 85°С, бактерии — 88°С. Высшие растения в термальных водах отсутствуют (лишь один вид ряски живет при 32—35°С). Интересно, что обитатели термальных вод живут при температурах, очень близких к летальному пределу температур: водоросль Oscillatoria, живущая на о. Ява в воде с температурой 64°С, погибает при 68°С уже через 5—10 мин! Водоросли выдерживают очень высокие температуры (67—75°С) только в условиях полного солнечного освещения, а в затененных источниках не выносят и более низкой температуры порядка 50—55°С.
Действие экстремальных высоких температур влечет за собой целый ряд опасностей для растений: сильное обезвоживание и иссушение, ожоги, разрушение хлорофилла, необратимые расстройства дыхания и других физиологических процессов, наконец, тепловую денатурацию белков, коагуляцию цитоплазмы и гибель. Перегрев почвы приводит к повреждению и отмиранию поверхностно расположенных корней, к ожогам корневой шейки.
В защитных приспособлениях растений к высоким температурам использованы разные пути адаптации. Анатомо-морфологические черты, предотвращающие перегрев, в основном те же самые, что служат растению для ослабления прихода радиации к тканям надземных частей. Это густое опущение, придающее листьям светлую окраску и усиливающее их способность к отражению; блестящая поверхность; уменьшение поверхности, поглощающей радиацию, — вертикальное и меридиональное положение листьев; свертывание листовых пластинок у злаков; общая редукция листовой поверхности и т. д. Эти же особенности строения одновременно способствуют уменьшению потери воды растением. Таким образом, комплексное действие экологических факторов на растение находит отражение и в комплексном характере адаптации. Поэтому трудно отличить те черты структуры, которые служили бы растению только «тепловой защитой» за редкими исключениями (например, развитие пробковой ткани или воздухоносной ткани близ корневой шейки у некоторых пустынных растений).
Весьма действенной физиологической адаптацией к перегреву служит усиленная транспирация, роль которой в терморегуляции растений уже подчеркивалась выше. Ряд авторов придает значение высокому содержанию у жаростойких растений защитных веществ (слизи, органические кислоты и др.). В адаптации растений к высоким температурам принимают участие весьма тонкие механизмы на клеточном и субклеточном уровне, например, сдвиги температурного оптимума активности важнейших ферментов. По современным представлениям (Александров, 1975), в основе устойчивости организмов к действию высоких температур (как и других экстремальных воздействий) лежит особое свойство структуры белковых молекул — сочетание прочности и гибкости, позволяющее им поддерживать структуру и функциональную активность в крайних условиях.
Своеобразное физиологическое приспособление к температуре среды, превышающей адаптивные возможности растений, — переход в состояние анабиоза, которое в этих случаях особенно часто встречается среди низших растений.
Наконец, следует упомянуть еще об одном способе адаптации растений к чрезмерно высоким температурам — это занятие ими временных экологических ниш (или микрониш), защищенных от сильной инсоляции и перегрева. У некоторых растений вся вегетация сдвигается на сезон с более благоприятными тепловыми условиями. Так, в растительном покрове пустынь и степей есть группа видов, начинающая вегетацию очень рано весной и успевающая ее закончить еще до наступления летней жары и сухости. Они переживают эти условия в состоянии летнего покоя в виде семян (эфемеры-однолетники: крупка, или веснянка весенняя, — Erophila verna, рогоглавник—Ceratocephalus falcatus, бурачок — Alyssum desertorum и др.) или подземных органов — луковиц, клубней, корневищ (эфемероиды-многолетники: тюльпаны, крокусы, гадючий лук, мятлик луковичный — Роа bulbosa и др.). Эта сезонная адаптация, связанная с перестройкой всего годичного цикла развития, обеспечивает растениям надежную защиту от жары даже в районах самых жарких пустынь.
Интересный пример того, как растения сильно прогреваемых местообитаний используют для активной жизнедеятельности даже небольшие прохладные отрезки времени, представляют лишайники жаркой и сухой пустыни Негев (Северная Африка), у которых фотосинтез идет только в самые первые прохладные часы после восхода солнца. Соответственно температурный оптимум фотосинтеза у них оказывается неожиданно низким для пустынных растений (около 20°С).
Экологические различия устойчивости растений к высоким температурам. Количественную характеристику жаростойкости растений дать не так просто, поскольку известно, что повреждающее действие экстремального фактора на живой организм зависит не только от интенсивности самого фактора, но и от продолжительности его влияния. Так, если растение в течение нескольких минут может выдержать 50—55°С, то при многочасовых экспозициях предельная температура окажется гораздо ниже, например, порядка 45°С. Сравнивать приводимые в литературе данные о температурной выносливости растений очень трудно, поскольку разные авторы используют в экспериментах неодинаковые по длительности экспозиции и различные критерии повреждения высокой температурой (появление видимых повреждений, начало отмирания листьев, снижение дыхания или фотосинтеза и т. д.).
При действии на клетку экстремальных высоких температур одновременно имеют место как повреждения и нарушения жизнедеятельности клетки, так и процессы адаптации и восстановления повреждений (репарации). В связи с этим различают (Александров, 1975) первичную теплоустойчивость - непосредственную реакцию клетки на повышение температуры, определяемую по различным признакам нарушения работы клетки при кратковременном (5-минутном) нагреве, и общую теплоустойчивость, определяемую при более длительных экспозициях, когда успевают включиться адаптационные и репараторные механизмы.
При сопоставлении общей теплоустойчивости у растений из различных по тепловым условиям местообитаний выявляется общая закономерность: четкое соответствие между температурными условиями обитания вида (в период активной жизни особей) и его выносливостью к высоким температурам. Можно проследить связь выносливости не только с общим температурным фоном, но и с температурным режимом листьев. Так, у африканских пустынных и саванных растений с интенсивной транспирацией, сильно охлаждающей листья, теплоустойчивость гораздо ниже, чем у видов со слабым транспирационным охлаждением. Такое же явление было обнаружено и у многих представителей средиземноморской флоры, причем различие теплоустойчивости у растений с разной интенсивностью транспирации достигало 12°С.
Экологические различия первичной теплоустойчивости также проявляются достаточно четко, причем особенно хорошо они видны при сравнении близких видов, живущих в условиях различного теплового фона. У северных форм теплоустойчивость ниже, чем у более южных, а у эфемерных и эфемероидных, вегетирующих ранней весной, ниже, чем у видов с летней вегетацией.
Есть отличия и у растений одних и тех же географических районов, но разных экологических ниш. У водорослей, живущих в литоральной (приливно-отливной) зоне и периодически подвергающихся высыханию и нагреванию на воздухе, общая устойчивость к нагреву, как и первичная теплоустойчивость, заметно выше (на 12— 13°С), чем у постоянно погруженных сублиторальных. Такие же различия теплоустойчивости в зависимости от глубины обитания и у водных цветковых растений.
Даже у одной и той же особи теплоустойчивость по-разному нагреваемых частей неодинакова: например, у сильно транспирирующего листа хлопчатника предел устойчивости 46°С, а у коробочек—50°С (последние обычно имеют температуру на несколько градусов выше, чем окружающий воздух). Интересно в этом отношении различие весенних и летних листьев медуницы Pulmonaria obscura; у первых, развивающихся в более прохладное время, теплоустойчивость заметно ниже, чем у летних.
Теплоустойчивость клеток растений - свойство динамичное, меняющееся при изменении температуры окружающей среды. Обнаружены два способа ее модификационного изменения (Александров, 1975). Один из них - так называемая тепловая настройка встречается у водорослей. Их теплоустойчивость смещается соответственно температуре среды, причем довольно быстро — в течение нескольких часов (так, у литоральной водоросли Fucus vesiculosus во время отлива теплоустойчивость повышается по сравнению с периодом прилива). Такое смещение обратимо.
Другой путь приведения теплоустойчивости клеток в соответствие с изменившимся тепловым фоном обнаружен у клеток мохообразных и цветковых растений: у них теплоустойчивость остается стабильной, если изменения температуры не выходят за пределы оптимальных и близких к оптимуму, но повышается при кратковременном действии высоких (супероптимальных) температур. Это явление было названо «тепловой закалкой». Оно наблюдается в природных условиях в периоды значительного повышения температур, благодаря чему растения способны переносить наиболее жаркие дни лета. Например, в Туркмении у ряда видов (злаков-—Aristida karelini, Arundo donax, древесных пород — Catalpa speciosa, Morus alba и др.) обнаружено, что в результате «тепловой закалки» теплоустойчивость повышается в самые жаркие летние месяцы и часы дня, так что в целом динамика первичной теплоустойчивости клеток хорошо согласуется с ходом температуры в течение не только вегетационного периода, но и в течение дня.
Сезонная динамика устойчивости растений к нагреванию — повышение ее в наиболее жаркий период года — проявляется и во многих других случаях.
Все сказанное до сих пор относилось к активным фазам жизненных циклов растений. Совершенно особое положение занимают покоящиеся стадии (семена, споры) или растения в состоянии анабиоза. Жароустойчивость резко снижается при увлажнении и тем более в начале процессов роста и развития.
4.1. Жароустойчивость
Жароустойчивость зависит от продолжительности воздействия тепла, т. е. подчиняется закону дозы: более умеренная жара при большой продолжительности оказывает такое же повреждающее действие, как и кратковременная сильная жара. Поэтому условились характеризовать устойчивость переносимостью определенных температур при их получасовом воздействии. Если бы вместо этого высокая температура поддерживалась в течение часа, то пределы устойчивости лежали бы примерно на 1—2°С ниже. По отношению к жароустойчивости можно различать следующие группы растений
4.2. Нежаростойкие виды.
В эту группу можно объединить все виды, которые повреждаются уже при 30—40°С в крайнем случае при 45 °С: эукариотические водоросли и подводные листостебельные растения, лишайники в набухшем состоянии (которые однако, при сильной инсоляции скоро высыхают и в таком состоянии вполне жаростойки) и, наконец, большинство мягколистных наземных растений, Различные фитопатогенные бактерии и вирусы также разрушаются при относительно низких температурах (например, вирус увядания томатов при 40-45°). Все эти виды могут заселять лишь такие местообитания, в которых они не подвергаются слишком большому перегреву, а более сильную жару выносят разве только в том случае, если они способны эффективно понижать собственную температуру за счет транспирации (виды “снижающие температуру", по О. Ланге).
4.3. Жаровыносливые эукариоты.
Растения солнечных и сухих местообитаний, как правило, обладают высокой способностью закаливаться по отношению к жаре; они переносят получасовое нагревание до 50—60 °С. Температура немного выше 60 °С является, очевидно, непереходимой границей для высокодифференцированных растительных клеток (с ядром и другими органеллами).
4.4. Жароустойчивые прокариоты.
Некоторые термофильные прокариоты переносят чрезвычайно высокие температуры: бактерии до 90°С, сине-зеленые водоросли до 75"С. Они обладают, так же как и термостабильные вирусы, особенно устойчивыми нуклеиновыми кислотами и белками.
Жаростойкость - очень специфичное свойство: даже близко родственные виды одного и того же рода могут заметно различаться по этому признаку. Особенно характерные различия в устойчивости, которые можно связать с условиями существования в естественных ареалах данных растений, возникли в ходе эволюции и отбора. Так, например, жаростойкость листьев многих видов в тундре составляет 42, в тайге 44 и в жарких полупустынях 47°С.
ГЛАВА 5. ВЛИЯНИЕ ХОЛОДА НА РАСТЕНИЯ И ПРИСПОСОБЛЕНИЯ К НЕМУ
О пределе холода, который способны вынести растения в естественных условиях, дают представление величины предельно низких температур на земном шаре. Там, где зарегистрирована самая низкая температура (—90°С, станция «Восток» в Антарктиде), растительность отсутствует; а в районах, где живут растения, отмечена температура —68°С (Оймякон в Якутии, область таежных лесов из лиственницы — Larix dahurica).
Растительный покров обширных территорий земного шара (умеренные и арктические области, высокогорья) ежегодно в течение нескольких месяцев подвергается действию низких температур. Кроме того, в отдельных районах и в более теплые сезоны растения могут испытывать кратковременные воздействия пониженных температур (ночные и утренние заморозки). Наконец, есть местообитания, где вся жизнь растений проходит на весьма пониженном температурном фоне (арктические снежные и морские водоросли, приснежная—нивальная растительность в высокогорьях). Неудивительно, что естественный отбор выработал у растений ряд защитных приспособлений к неблагоприятному действию холода.
Кроме непосредственного влияния низкой температуры на растения под действием холода возникают и другие неблагоприятные явления. Например, уплотнение и растрескивание замерзшей почвы приводит к разрыву и механическому повреждению корней, образование ледяной корки на поверхности почвы ухудшает аэрацию и дыхание корней. Под толстым и долго лежащим снежным покровом при температуре около 0°С наблюдается зимнее «выпревание», истощение и гибель растений в связи с расходом резервных веществ на дыхание, грибными заболеваниями («снежная плесень») и т. д., а в случае избыточно увлажненной почвы для растений опасно также зимнее «вымокание». В тундре и северной тайге распространено явление морозного «выпирания» растений, которое вызывается неравномерным замерзанием и расширением почвенной влаги. При этом возникают силы, выталкивающие растение из почвы, в результате чего происходит «выпучивание» целых дернин, оголение и обрывы корней и т. д. вплоть до повала небольших деревьев. Поэтому кроме собственно холодостойкости (или морозостойкости) — способности переносить прямое действие низких температур, различают еще зимостойкость растений - способность к перенесению всех перечисленных выше неблагоприятных зимних условий.
Особо следует остановиться на том, как влияет на растения низкая температура почвы. Холодные почвы в сочетании с умеренно-теплым режимом воздушной среды растений (а иногда и со значительным нагреванием надземных частей растений) — явление нередкое. Таковы условия жизни растений на болотах и заболоченных лугах с тяжелыми почвами, в некоторых тундровых и. высокогорных местообитаниях и в обширных областях вечной мерзлоты (около 20% всей суши), где в период вегетации оттаивает лишь неглубокий, так называемый «деятельный» слой почвы. В условиях пониженных температур почвы после снеготаяния (0—10°С) проходит значительная часть вегетации ранневесенних лесных растений — «подснежников». Наконец, кратковременные периоды резкого несоответствия холодных почв и прогретого воздуха испытывают ранней весной многие растения умеренного климата (в том числе и древесные породы).
Еще в прошлом веке немецкий физиолог Ю. Сакс показал, что при охлаждении почвы до околонулевых температур (обкладывание горшка льдом) может наступить завядание даже обильно политых растений, поскольку при низких температурах корни не способны интенсивно всасывать воду. На этом основании в экологии распространилось мнение о «физиологической сухости» местообитаний с холодными почвами (т. е. недоступности влаги растениям при ее физическом обилии). При этом упускали из виду, что Сакс и другие физиологи свои опыты производили с достаточно теплолюбивыми растениями (огурцы, тыква, салат и др.) и что в природных холодных местообитаниях растения, для которых низкие температуры почв служат естественным фоном, возможно, реагируют на них совсем иначе. Действительно, современные исследования показали, что у большинства растений тундр, болот, у ранневесенних лесных эфемероидов отсутствуют те явления угнетения (затруднение всасывания воды, расстройства водного режима и т. д.), которые могли бы быть вызваны «физиологической сухостью» холодных почв. Это же показано и для многих растений в областях вечной мерзлоты. Вместе с тем нельзя полностью отрицать угнетающее влияние низких температур на всасывание влаги и другие стороны жизнедеятельности корней (дыхание, рост и др.), а также на активность почвенной микрофлоры. Оно без сомнения имеет значение в комплексе трудных условий для жизни растений в холодных местообитаниях. «Физиологическая сухость», «физиологическая засуха» из-за низкой температуры почв возможны в жизни растений в наиболее трудных условиях, например при выращивании на холодных почвах теплолюбивых растений или ранней весной для древесных пород, когда еще необлиственные ветви сильно нагреваются (до 30—35°С) и увеличивают потерю влаги, а интенсивная работа корневых систем еще не началась.
Каких-либо специальных морфологических приспособлений, защищающих от холода, у растений нет, скорее можно говорить о защите от всего комплекса неблагоприятных условий в холодных местообитаниях, включающего сильные ветры, возможность иссушения и т. д. У растений холодных областей (или у переносящих холодные зимы) часто встречаются такие защитные морфологические особенности, как опушение почечных чешуи, зимнее засмоление почек (у хвойных), утолщенный пробковый слой, толстая кутикула, опушение листьев и т. д. Однако их защитное действие имело бы смысл лишь для сохранения собственного тепла гомеотермных организмов, для растений же эти черты, хотя и способствуют терморегуляции (уменьшение лучеиспускания), в основном важны как защита от иссушения. В растительном мире есть интересные примеры адаптации, направленных на сохранение (хотя и кратковременное) тепла в отдельных частях растения. В высокогорьях Восточной Африки и Южной Америки у гигантских «розеточных» деревьев из родов Senecio, Lobelia, Espeletia и других от частых ночных морозов существует такая защита: ночью листья розетки закрываются, защищая наиболее уязвимые части — растущие верхушки. У некоторых видов листья опушены снаружи, у других в розетке скапливается выделяемая растением вода; ночью замерзает лишь поверхностный слой, а конусы нарастания оказываются защищенными от мороза в своеобразной «ванне».
Среди морфологических адаптации растений к жизни в холодных местообитаниях важное значение имеют небольшие размеры и особые формы роста. Не только многие травянистые многолетники, но также кустарники и кустарнички полярных и высокогорных областей имеют высоту не более нескольких сантиметров, сильно сближенные междоузлия, очень мелкие листья (явление нанизма или карликовости). Кроме хорошо известного примера — карликовой березки (Betula папа), можно назвать карликовые ивы (Sahx polaris, S. arctica, S. herbacea) и многие другие. Обычно высота этих растений соответствует глубине снежного покрова, под которым зимуют растения, так как все части, выступающие над снегом, гибнут от замерзания и высыхания. Очевидно, в образовании карликовых форм в холодных местообитаниях немалую роль играют и бедность почвенного питания в результате подавления активности микробов, и торможение фотосинтеза низкими температурами. Но независимо от способа образования карликовые формы дают известное преимущество растениям в приспособлении к низким температурам: они располагаются в припочвенной экологической микронише, наиболее прогреваемой летом, а зимой хорошо защищены снежным покровом и получают дополнительный (хотя и небольшой) приток тепла из глубины почвы.
Другая адаптивная особенность формы роста — переход сравнительно крупных растений (кустарников и даже деревьев) от ортотропного (вертикального) к плагиотропному (горизонтальному) росту и образование стелющихся форм— стланцев, стлаников, стланичков. Такие формы способны образовывать кедровый стланик (Pinus pumila), можжевельник (Juniperus sibirica, J. communis, J. turkestanica), рябина и др. Ветви стланцев распластаны по земле и приподнимаются не выше обычной глубины снежного покрова. Иногда это результат отмирания ствола и разрастания нижних ветвей (например, у ели), иногда это рост дерева как бы «лежа на боку» с плагиотропным, укоренившимся во многих местах стволом и приподнимающимися ветвями (кедровый стланик). Интересная особенность некоторых древесных и кустарниковых стлаников — постоянное отмирание старой части ствола и нарастание «верхушки», в результате чего трудно определить возраст особи.
Стланики распространены в высокогорных и полярных областях, в условиях, которых уже не выдерживают древесные породы (например, на верхней границе леса). Своеобразные «стланиковые» формы в крайних условиях встречаются и у кустарничков, и даже у видов лишайников, обычно имеющих прямостоячий кустистый рост: на скалах Антарктиды они образуют стелющиеся слоевища,
В зависимости от условий возможны видоизменения роста одного и того же вида. Но есть виды, целиком перешедшие к форме стланика, например горный сосновый стланик, произрастающий в Альпах и Карпатах — Pinus mughus, выделенный в качестве самостоятельного вида из сосны горной — Pinus montana.
К числу форм роста, способствующих выживанию растений в холодных местообитаниях, принадлежит еще одна чрезвычайно своеобразная — подушковидная. Форма растения-подушки образуется в результате усиленного ветвления и крайне замедленного роста скелетных осей и побегов. Мелкие ксерофильные листья и цветки расположены по периферии подушки. Между отдельными ветвями скапливаются мелкозем, пыль, мелкие камни. В результате некоторые виды растений-подушек приобретают большую компактность и необычайную плотность: по таким растениям можно ходить, как по твердой почве. Таковы Silene acaulis. Gypsophila aretioides, Androsace helvetica, Acantholimon diapensioides. Издали их трудно отличить от валунов. Менее плотны колючие подушки из родов Eurotia, Saxifraga.
Растения-подушки бывают разных размеров (до 1 м в поперечнике) и разнообразных очертаний: полушаровидные, плоские, вогнутые, иногда довольно причудливых форм (в Австралии и Новой Зеландии их называют «растительными овцами»).
Благодаря компактной структуре растения-подушки успешно противостоят холодным ветрам. Поверхность их нагревается почти так же, как и поверхность почвы, а колебания температуры внутри менее выражены, чем в окружающей среде. Отмечены случаи значительного повышения температуры внутри подушки; например, у наиболее распространенного вида высокогорий Центрального Тянь-Шаня Dryadanthe tetrandra при температуре воздуха 10°С внутри подушки температура доходила до 23°С благодаря аккумуляции тепла в этом своеобразном «парнике». В связи с медленным ростом растения-подушки по долговечности вполне сравнимы с деревьями. Так, на Памире подушка Acantholimon hedini диаметром 3 см имела возраст 10—12 лет, при 10 см — 30—35 лет, а возраст крупных подушек достигал не одной сотни лет.
В пределах общей формы растений-подушек существует экологическое разнообразие: например в горах, окружающих Средиземное море, распространены менее компактные по строению ксерофильные «колючие подушки», которые не встречаются высоко в горах, так как малоустойчивы к холоду, но зато очень устойчивы к засухе. Рыхлое строение подушки здесь оказывается более выгодным для растения, чем компактное, так как в условиях летней засухи и сильной инсоляции снижает опасность перегрева ее поверхности. Температура поверхности средиземноморских подушек обычно ниже температуры воздуха благодаря сильной транспирации, а внутри подушки создается особый микроклимат; например, влажность воздуха держится на уровне 70—80% при влажности наружного воздуха 30%. Таким образом, здесь форма подушки — это приспособление к совсем иному комплексу факторов, отсюда и ее иная «конструкция».
Среди других особенностей роста, помогающих растениям преодолевать действие холода, следует еще упомянуть различные приспособления, направленные на углубление зимующих частей растений в почву. Это развитие контрактильных (сократительных) корней — толстых и мясистых, с сильноразвитой механической тканью. Осенью они высыхают и сильно сокращаются в длину (что хорошо заметно по поперечной морщинистости), при этом возникают силы, втягивающие в почву зимующие почки возобновления, луковицы, корни, корневища.
Контрактильные корни встречаются у многих растений высокогорий, тундр и других холодных местообитаний. Они позволяют, в частности, успешно противостоять морозному выпиранию растений из почвы. В последнем случае они не только втягивают почку возобновления, но и ориентируют ее перпендикулярно поверхности, если растение повалено. Глубина втягивания контрактильными корнями варьирует от сантиметра до нескольких десятков сантиметров в зависимости от особенностей растения и механического состава почвы.
Адаптивное изменение формы как защита от холода — явление, ограниченное в основном холодными районами. Между тем действие холода испытывают и растения более умеренных областей. Гораздо более универсальны физиологические способы защиты. Они направлены прежде всего на снижение точки замерзания клеточного сока, предохранение воды от вымерзания и т. д. Отсюда такие особенности холодостойких растений, как повышение концентрации клеточного сока, главным образом за счет растворимых углеводов. Известно, что при осеннем повышении холодостойкости («закаливании») крахмал превращается в растворимые сахара. Другая черта холодостойких растений — повышение доли коллоидно-связанной воды в общем водном запасе.
При медленном снижении температуры растения могут вынести охлаждение ниже точки замерзания клеточного сока в состоянии переохлаждения (без образования льда). Как показывают эксперименты, уровень точек переохлаждения и замерзания тесно связан с температурными условиями обитания. Однако у растений состояние переохлаждения возможно лишь при небольшом холоде (несколько градусов ниже нуля). Гораздо более действенным этот путь адаптации оказывается у других пойкилотермных организмов— насекомых, у которых роль антифризов играют глицерин, трегалоза и другие защитные вещества (открыто зимующие насекомые могут вынести переохлаждение клеточных соков без замерзания до — 30°С).
Многие растения способны сохранять жизнеспособность и в промерзшем состоянии. Есть виды, замерзающие осенью в фазе цветения и продолжающие цвести после оттаивания весной (мокрица — Stellaria media, маргаритка— Bellis perennis, арктический хрен — Cochlearia fenestrata и др.). Ранневесенние лесные эфемероиды («подснежники») в течение короткой вегетации неоднократно переносят весенние ночные заморозки: цветки и листья промерзают до стекловидно-хрупкого состояния и покрываются инеем, но уже через 2—3 ч после восхода солнца оттаивают и возвращаются в обычное состояние. Хорошо известна способность мхов и лишайников переносить длительное промерзание зимой в состоянии анабиоза. В одном из опытов лишайник Cladonia замораживали при —15°С на 110 недель (более двух лет!). После оттаивания лишайник оказался живым и вполне жизнеспособным, у него возобновились фотосинтез и рост. Очевидно, у лишайников в крайне холодных условиях существования периоды такого анабиоза очень длительны, а рост и активная жизнедеятельность осуществляются лишь в короткие благоприятные периоды (причем не каждый год). Такое частое прерывание активной жизни на долгие сроки, по-видимому, объясняет колоссальный возраст многих лишайников, определенный радиоуглеродным методом (до 1300 лет у Rhizocarpon geographicum и Альпах, до 4500 лет у лишайников в Западной Гренландии).
Анабиоз — «крайняя мера» в борьбе растения с холодом, приводящая к приостановке жизненных процессов и резкому снижению продуктивности. Гораздо большее значение в адаптации растений к холоду имеет возможность сохранения нормальной жизнедеятельности путем снижения температурных оптимумов физиологических процессов и нижних температурных границ, при которых эти процессы возможны. Как видно на примере оптимальных температур для фотосинтеза и его нижних температурных порогов, эти явления хорошо выражены у растений холодных местообитаний. Так, у альпийских и антарктических лишайников для фотосинтеза оптимальна температура около 5°С; заметный фотосинтез удается обнаружить у них даже при —10°С. При сравнительно низких температурах лежит оптимум фотосинтеза у арктических растений, высокогорных видов, ранневесенних эфемероидов. Зимой при отрицательных температурах способны к фотосинтезу многие хвойные древесные породы. У одного и того же вида температурные оптимумы фотосинтеза связаны с изменением условий: так, у альпийских и арктических популяций травянистых многолетников — Охуria digyna, Thalictrum alpinum и других видов они более низкие, чем у равнинных. Показательно в этом отношении и сезонное смещение оптимума по мере повышения температуры от весны к лету и снижения от лета к осени и зиме.
При низких температурах для растений чрезвычайно важно сохранить достаточный уровень дыхания — энергетической основы роста и репарации возможных повреждений холодом. На примере ряда растений памирских высокогорий показано, что в этих условиях довольно интенсивное дыхание сохраняется после действия температуры от —6 до —10°С.
Еще один пример устойчивости физиологических процессов к холоду— зимний и предвесенний подснежный рост у растений тундр, высокогорий и других холодных местообитаний с коротким вегетационным периодом, обусловленным заблаговременной подготовкой. Это явление чрезвычайно ярко выражено у эфемероидов лесостепных дубовых лесов (пролески — Scilla sibirica, хохлатки — Corydalis halleri, гусиного лука — Gagea lutea, чистяка — Ficariaverna и др.), у которых уже в начале зимы начинается рост побегов со сформированными внутри бутонами (вначале в промерзшей почве, а затем над почвой, внутри снежного покрова. Не прекращается у них зимой и формирование генеративных органов. По мере приближения сроков снеготаяния скорость подснежного роста заметно возрастает. В пору раннего «предвесенья», когда лес кажется еще совсем безжизненным, под снеговым покровом над почвой уже возвышаются тысячи ростков пролески и гусиного лука, достигающих к этому времени 2—7 см высоты и готовых начать цветение, как только сойдет снег. Образование хлорофилла у ранневесенних эфемероидов также начинается при низких температурах порядка 0°С, еще под снегом.
Экологические различия холодостойкости растений. В экологии и экологической физиологии в качестве одного из показателей устойчивости к холоду используется способность растения переносить низкую температуру в экспериментальных условиях в течение определенного срока. Накоплено много данных, позволяющих сравнивать растения различных по температурным условиям местообитаний. Однако эти данные не всегда строго сравнимы, поскольку температура, которую способно вынести растение, в числе прочих причин зависит и от продолжительности ее действия (так, небольшой холод порядка —3—5°С умеренно теплолюбивое растение способно вынести в течение нескольких часов, но та же температура может оказаться губительной, если будет действовать несколько суток), В большинстве экспериментальных работ принято охлаждение растений в течение суток или близкого срока.
Как видно из нижеследующих данных и, холодостойкость растений весьма различна и зависит от условий, в которых они обитают.
Один из крайних примеров холодостойкости — так называемый «криопланктон». Это снежные водоросли, живущие в поверхностных слоях снега и льда и при массовом размножении вызывающие его окрашивание («красный снег», «зеленый снег» и т. д.). В активных фазах они развиваются при 0°С (летом на оттаявшей поверхности снега и льда). Пределы устойчивости к низким температурам от —36°С у Chlamydomonas nivalis до —40, —60°С у Pediastrutn boryanum, Hormidium flaccidum. Столь же велика холодостойкость фитопланктона полярных морей, нередко зимующего в корке льда.
Большой холодостойкостью отличаются альпийские карликовые кустарнички — Rhododendron ferrugineum, Erica carnea и др. (—28, —36°С), хвойные древесные породы: так, для сосны Pinus strobus в Тирольских Альпах в экспериментах отмечена рекордная температура: —78°С.
Совсем небольшая холодостойкость у растений тропических и субтропических областей, где они не испытывают действия низких температур (за исключением высокогорий). Так, для водорослей тропических морей (особенно мелководных районов) нижняя температурная граница лежит в пределах 5—14°С (вспомним, что для водорослей арктических морей верхняя граница составляет 16°С). Саженцы тропических древесных пород гибнут при 3—5°С. У многих тропических термофильных растений, например декоративных оранжерейных видов из родов Gloxinia, Coleus, Achimenes и др., понижение температуры до нескольких градусов выше нуля вызывает явления «простуды»: при отсутствии видимых повреждений через некоторое время останавливается рост, опадают листья, растения завядают, а затем и гибнут. Известно это явление и для теплолюбивых культурных растений (огурцов, томатов, фасоли).
Очень невелика устойчивость к холоду у термофильных плесневых грибов из родов Mucor, Thermoascus, Anixia и др. Они гибнут за три дня при температуре 5—6°С и даже температуру 15—17°С не могут выносить дольше 15—20 дней.
В зависимости от степени и специфического характера холодостойкости можно выделить следующие группы растений.
5.1. Нехолодостойкие растения
К этой группе относятся все те растения, которые серьезно повреждаются уже при температурах выше точки замерзания: водоросли теплых морей, некоторые грибы и многие листостебельные растения тропических дождевых лесов.
5.2. Неморозостойкие растения
Эти растения хотя и переносят низкие температуры, но вымерзают, как только в тканях начинает образовываться лед. Неморозостойкие растения защищены от повреждения только средствами, замедляющими замерзание. В более холодное время года у них повышается концентрация осмотически активных веществ в клеточном соке и в протоплазме, а также переохлаждаемость, что предотвращает или замедляет образование льда при температурах примерно до —7°С, а при постоянном переохлаждении и до более низких температур. В период вегетации все листостебельные растения неморозостойки. В течение всего года чувствительны к образованию льда глубоководные водоросли, холодных морей и некоторые пресноводные водоросли, тропические и субтропические древесные растения и различные виды из умеренно-теплых районов.
5.3. Льдоустойчивые» растения
В холодное время года эти растения переносят внеклеточное замерзание воды и связанное с ним обезвоживание. Устойчивыми к образованию льда становятся некоторые пресноводные водоросли и водоросли приливной зоны, наземные водоросли, мхи всех климатических зон (даже тропической) и многолетние наземные растения областей с холодной зимой. Некоторые водоросли, многие лишайники и различные древесные растения способны чрезвычайно сильно закаливаться; тогда они остаются без повреждений и после продолжительных суровых морозов, и их можно охлаждать даже до температуры жидкого азота.
ЗАКЛЮЧЕНИЕ
Удивительная гармония живой природы, ее совершенство создаются самой природой: борьбой за выживание. Формы приспособлений у растений бесконечно разнообразны. Весь растительный мир со времени своего появления совершенствуется по пути целесообразных приспособлений к условиям обитания.
Растения – пойкилотермные организмы. Повреждения начинаются на молекулярном уровне с нарушений функций белков и нуклеиновых кислот. Температура - это фактор, серьезно влияющий на морфологию и физиологию растений, требующий изменений в самом растении, которые могли бы приспособить его. Адаптации растений к разным температурным условиям даже в пределах одного вида различны.
При высоких температурах выявлены такие адаптации, как густое опушение листьев, блестящая поверхность, уменьшение поверхности, поглощающей радиацию, изменение положения по отношению к источнику тепла, усиление транспирации, высокое содержание защитных веществ, сдвиг температурного оптимума активности важнейших ферментов, переход в состояние анабиоза, занятие микрониш, защищенных от инсоляции и перегрева, сдвиг вегетации на сезон с более благоприятными тепловыми условиями.
Адаптации к холоду таковы: опушение почечных чешуй, толстая кутикула, утолщение пробкового слоя, опушение листьев, закрывание розеточных листьев ночью, развитие карликовости, развития стелящихся форм, подушковая форма роста, развитие контрактильных корней, повышение концентрации клеточного сока, повышение доли коллоидно-связанной воды, анабиоз
По различной термоустойчивости выделяются виды: нехолодостойкие, неморозоустойчивые, льдоустойчивые, нежаростойкие, жаровыносливые зукариоты, жаровыносливые прокариоты.
ЛИТЕРАТУРА
Александров В.Я. Клетки, макромолекулы и температура. Л.: Наука, 1975г. 328 с
Вознесенский В. Л., Рейнус Р. М . Температура ассимилирующих органов пустынных растений // Бот. журн., 1977; т. 62. N 6
Горышина Т. К. Ранневесенние эфемероиды лесостепных дубрав. Л., Изд-во Ленингр. ун-та. 1969
Горышина Т.Н. Экология растений уч. Пособие для ВУЗов, Москва, В. школа, 1979г. 63-102с.
Культиасов И.М. Экология растений М.: Изд-во московского ун-та, 1982 33-89с.
Лархер В. Экология растений М.: Мир 1978 г. 283-324c.
Максимов Н. А. Избранные работы по засухоустойчивости и зимостойкости растений М.:Изд-во АН-СССР.-1952 т. 1-2
Полевой В.В. Физиология растений 1978г. 414-424с.
Селянинов Г. Т. К методике сельскохозяйственной климатологии. Труды по с.-х. метеорологии, 1930, т. 22
Тихомиров Б. А. Очерки по биологии растений Арктики. Л., Изд-во АН СССР, 1963
Туманов И. И. Причины гибели растений в холодное время года и меры её предупреждения. М., Знание, 1955