Классификация основных методов медицинских исследований. Лабораторные методы исследований
Классификация основных методов медицинских исследований. Лабораторные методы исследований
Классификация методов медицинских исследований
Современные методы медицинских исследований могут быть разделены на две основные группы – лабораторные и инструментальные. Основные методы, относящиеся к двум этим группам, представлены на схеме. Кроме того, к инструментальным методам относится особая группа методов, названная хирургические методы. Отдельное рассмотрение этой группы связано с особенностями этих методов, заключающимися в том, что инструментальные методы сочетаются в них с хирургическими вмешательствами.
Дадим краткую характеристику основных методов, представленных на схеме. В последующих лекциях все эти методы будут рассмотрены достаточно подробно.
Лабораторные методы состоят в исследовании химических и физических свойств биологических жидкостей и тканей, проб окружающей среды (смывы с поверхностей, пробы воды, почвы, воздуха и др.). Кроме того, к лабораторным методам относятся исследование и идентификация микроорганизмов (бактериология и вирусология), с целью выявления патогенных и условно-патогенных для человека и животных микроорганизмов и разработки методов специфической профилактики и лечения инфекционных болезней. В микробиологии широко применяют микроскопические методы исследования, методы культивирования микроорганизмов, генетической инженерии, хроматографии, масс-спектрометрии, изотопных индикаторов, электрофореза, цитологические, иммунохимические, биохимические и другие. Инструментальные методы диагностики могут быть, как инвазивными, так и неинвазивными. Инвазивные методы – это методы, основанные на проникновении каких-либо датчиков или агентов в организм обследуемого. Например, введение контрастных веществ в кровь или различные полости организма, использование зондов и датчиков, вводимых в организм. К этим методам относятся ангиография, гастрофиброскопия, пневмоэцефалография, радиационные методы и др. Неинвазивные методы – методы не связанные с проникновением в организм. К ним относятся рентгеновские, электрические, ультразвуковые, оптические, тепловидение.
Клинико-диагностическая лаборатория (КДЛ) - обязательное отделение любой поликлиники или больницы, и, чем крупнее лечебное учреждение, тем более многопрофильна его лаборатория. Современный врач, практически любого профиля, не может работать без точных качественных показателей состояния систем и органов, обмена веществ, защитных резервов организма и т.д., так как на их основе устанавливается и объективизируется диагноз, контролируется течение заболевания и эффективность терапии.
Выделяют 3 основных группы объективных методов исследования организма человека:
1. Структурная диагностика — методы, выявляющие изменения в строении органов и тканей (рентгенологические, ультразвуковые исследования, тепловидение, эндоскопия — гастроскопия, бронхоскопия, колоноскопия и т.д.).
2. Функциональная диагностика — методы изучения функционирования органов и систем по их электрическим проявлениям (электрокардиография, электроэнцефалография, электромиография и др.), звуковым (фонокардиография), механическим (сфигмография) и другим проявлениям.
3. Лабораторная диагностика — методы выявления изменений клеточного и химического состава биожидкостей и других биоматериалов.
Не уменьшая значимости методов структурной и функциональной диагностики, следует отметить, что 70-80% объективной диагностической информации врач получает на основе лабораторных анализов, а состояние некоторых систем, в частности, иммунной, свертывающей систем крови можно определить только с помощью лабораторных методов. Кроме того, некоторые лабораторные исследования позволяют выявить патологический процесс на доклинической стадии, когда никаких субъективных ощущений и выраженных изменений органов и тканей нет, а также оценивать степень риска развития того или иного заболеваний для здорового человека.
В настоящее время лабораторная медицина представляет собой комплекс многих субдисциплин, каждая из которых исследует определенные компоненты биологического материала, используя собственные специфические методы.
Клинико-лабораторная гематология (гемоцитология и коагулогия)
Гемоцитология — раздел лабораторной медицины, изучающий клетки крови и костного мозга. Это звено лабораторной службы традиционно связано с клинической гематологией, так как диагностика заболеваний крови обязательно включает подсчет количества, выявление структурных аномалий и степени созревания клеток крови, а также определение миелограммы. Для этого используется не только традиционная микроскопия, но и люминисцентный, сканирующий, электронный микроскоп. Для качественного и количественного определения популяций клеток, находящихся на разных стадиях пролиферации и дифференцировки в настоящее время применяют методы цитохимии, моноклонального типирования, радиоизотопного исследования. Традиционные рутинные определения количества эритроцитов, лейкоцитов, гемоглобина, лейкограммы в современных лабораториях проводятся на автоматических анализаторах с высокой производительностью и точностью.
Коагулогические исследования — комплекс анализов, характеризующих свертывающую систему крови (гемостаз). Современные автоматизированные коагулографы позволяют одновременно определять 5-9 показателей в течение нескольких минут.
Клиническая биохимия — один из наиболее обширных разделов лабораторной медицины, включающий исследования содержания органических и неорганических веществ, образующихся в процессе биохимических реакций, а также активности ферментов в сыворотке, плазме, крови, моче, ликворе и других биологических жидкостях. Современные приборы для биохимических исследований автоматически определяют одновременно до 20-30 показателей, используя несколько микролитов крови. Широкое внедрение методов «сухой химии» позволяет перенести ряд биохимических анализов из пробирки на специальные тест-полоски и без приборов определять многие показатели почти мгновенно.
Клинико-лабораторная иммунология — относительно молодой и быстро развивающийся раздел лабораторной медицины, обеспечивающий определение на основе комплекса показателей степени противоинфекционной и противоопухолевой защиты организма, а также лабораторную диагностику и контроль эффективности терапии аллергических заболеваний. Определение иммунного статуса человека становится необходимым условием успешного лечения очень многих заболеваний, поэтому иммунологическая лаборатория в ближайшие годы будет обязательным подразделением всех КДЛ.
Клиническая микробиология (бактериология, микология, вирусология)
Лабораторные микробиологические исследования проводятся для выявления возбудителей инфекционно-воспалительных процессов, определения их чувствительности к лекарственным препаратам и контроля за эффективностью лечения. Потребность в таких исследованиях постоянно растет; необходимость массового обследования и диагностики ВИЧ-инфекции потребовала создания специализированных лабораторий. В последние десятилетия в этой области достигнут большой прогресс благодаря широкому внедрению иммунологических и молекулярно-генетических методов, позволяющих с высокой точностью определять специфические поверхностные антигены и фрагменты ДНК вирусов, бактерий, грибов, простейших с помощью реакции иммунофлюоресценции (РИФ), иммуноферментного анализа (ИФА), полимеразной цепной реакции (ПЦР), ДНК-зондов. Это дает возможность точно определять возбудителей, которые с помощью культуральных и серологических методов выявлены быть не могут. Автоматизированные анализаторы позволяют индентифицировать возбудителей и определять их чувствительность к антибиотикам за несколько часов.
Цитология (эксфолиативная и пункционная)
Цитологическая диагностика заключается в изучении строения и выявлении патологических изменений в структуре клеток, полученных из экссудатов, синовиальной и спинномозговой жидкости, с поверхности слизистых оболочек, а также из тканей и органов при их пункционной биопсии. Пункционная цитология является основным методом дооперационной и операционной диагностики доброкачественных и злокачественных новообразований. Современные методы автоматизированной цитофотометрии, гистохимии, радиоизотопного исследования делают цитологический анализ оперативным и точным.
Клиническая молекулярная биология и диагностическая генетика
Исследует генетический материал - хромосомы, гены, нуклеиновые кислоты для выявления разных типов мутаций, лежащих в основе наследственных заболеваний и пороков развития. Современные методы ДНК-диагностики — гибридизационный анализ, амплификация геномов, полимеразная цепная реакция, ДНК-зонды и другие незаменимы в пренатальной диагностике, а также широко используются для определения вирусов и бактерий.
Клиническая токсикология
Обеспечивает лабораторную диагностику острых и хронических отравлений, вызванных органическими и неорганическими веществами, лекарственными препаратами и т.д.
Высокая степень загрязнения окружающей среды, производства с вредными условиями, техногенные аварии и многие другие факторы определяют современную значимость этой области медицины.
Клинико-лабораторная паразитология
Выявляет и идентифицирует возбудителей паразитарных заболеваний — насекомых, гельминтов, простейших. Такие заболевания имеют определенные территориальные и социальные особенности распространения, но в связи с высокой миграционной активностью населения у людей появляются паразитарные заболевания, не характерные для мест постоянного проживания, поэтому лабораторная паразитология в настоящее время сохраняет высокую актуальность и значимость.
Лабораторный контроль (мониторинг) лекарственной терапии
Используя комплекс биохимических, физико-химических, цитологических и других методов осуществляет контроль за соотношением дозы и эффекта лекарственных препаратов, их индивидуальной фармакокинетикой. Такой лабораторный контроль распространен еще недостаточно широко, хотя необходим и эффективен при лекарственной терапии опухолей, неотложных состояний, длительных хронических заболеваниях и т.д. Современные автоматизированные системы регистрации обеспечивают высокую скорость и точность анализов.
Общеклинические исследования
Клинические лабораторные исследования относятся к числу самых распространенных методов диагностики заболеваний человека. Эти исследования включают; общие анализы крови и мочи, определение функционального состояния различных органов и систем (почек, печени и др.), изучение состава биожидкостей и выделений организма.
Количество этих исследований в медицинской практике непрерывно растет. Расширяется не только диапазон используемых показателей, но и постоянно совершенствуются сами методы.
Результаты лабораторных исследований не только способствуют выявлению той или иной патологии, но также используются для контроля за динамикой заболевания и эффективностью проводимой терапии. В комплексе с другими лабораторными и инструментальными методами они приобретают еще большее диагностическое значение. Однако целенаправленное назначение лабораторных анализов возможно только с учетом клинической картины заболевания. Стремление использовать как можно больше лабораторных показателей затрудняет их интерпретацию, загружает лабораторию излишней работой, оказывает дополнительную нагрузку на пациента.
Общие клинические исследования часто лишены специфичности, но это нисколько не умаляет их диагностического значения.
Клинические анализы крови
Когда говорят об анализах крови, всегда нужно иметь в виду, что собственно кровь является только частью системы, включающей в себя еще органы кроветворения (костный мозг, селезенка, лимфотические узлы, печень) и кроверазрушения (селезенка, ткани). Все звенья в этой системе взаимосвязаны и взаимозависимы.
Костный мозг является органом, в котором рождаются и созревают клетки крови. Через определенное время клетки поступают в кровеносное русло, в котором эритроциты живут около 120 суток, тромбоциты — 10, а нейтрофилы всего около 10 часов. Причем, если эритроциты и тромбоциты функционируют в кровеносном русле, то гранулоциты (нейтрофилы, эозинофилы, базофилы) и макрофаги - еще и в тканях.
Подсчет количества клеточных элементов, который может производиться, как в ручную, с помощью микроскопа, так и автоматически, позволяет определить функциональное состояние костного мозга, диагностировать целый ряд заболеваний, связанных с нарушением его деятельности.
Кроме того, определяя количество эритроцитов, лейкоцитов, тромбоцитов и других элементов, концентрацию гемоглобина и скорость оседания эритроцитов (СОЭ), можно выявить наличие воспалительного заболевания (пневмонии, ревматизма, полиартрита, туберкулеза и др.).
Биохимические анализы крови и мочи
Биохимические анализы крови и других биологических жидкостей составляют около 40% всех лабораторных анализов. Они могут характеризовать как состояние всего организма, например, показатели кислотно-щелочного равновесия, так и отдельных органов, например, органоспецифические ферменты. Поскольку обмен веществ между органами и тканями опосредован кровотоком, в плазме крови содержатся в разных концентрациях все вещества, поступающие в организм и синтезирующиеся в нем. Аналитические возможности современных лабораторий практически сняли вопрос «как определить?», так как в настоящее время имеются возможности определять вещества, содержащиеся в биологическом материале в концентрациях 10-6-10-9 Моль на литр, а их перечень включает несколько сотен органических и неорганических компонентов.
При проведении биохимических анализов биологических жидкостей определяют, прежде всего, суммарную концентрацию всех белков, находящихся в сыворотке крови или в моче. В построении белковых молекул используется 20 различных аминокислот, последовательность и количество которых определяют размеры и свойства белка. В организме постоянно идут процессы «сборки» белковых молекул из аминокислот и «демонтаж» для образования энергии или выведения «ненужных» белков. Скорости этих процессов строго сбалансированы, и поэтому концентрация белков в сыворотке крови, тканях и органах строго сбалансирована. Патологическое снижение концентрации белка возникает при уменьшении его синтеза в печени (гепатит, церроз), нарушениях функции желудка или кишечника (воспаления, опухоли), при часто повторяющихся кровотечениях (желудочных, легочных, маточных и др.), при заболеваниях почек, сопровождающихся значительной потерей белка с мочой, при обширных ожогах, продолжительной рвоте, поносе, лихорадке.
В моче, напротив, белка быть не должно, или только его следы. Обнаружения белка в моче в небольших количествах возможно после длительных физических нагрузок, переохлаждения, преобладания белковой пищи.
Патологическое увеличение количества белка в моче (протеинурия) свидетельствует, в первую очередь, о заболевании почек – пиелонефрит, гломерулонефрит, почечная недостаточность и др., а также возможно при воспалении мочевого пузыря (цистите).
Исследования свертывающей системы крови
Кровь — уникальная жидкая ткань, обладающая не только текучестью, но и способностью свертываться (коагулировать), то есть сгущаться и образовывать плотные сгустки (тромбы). Свойство текучести предотвращает слипание клеток, и они легко перемещаются по всем сосудам, включая самые тонкие — капилляры. Благодаря свертывающей способности при повреждении мелких и средних сосудов кровотечение через некоторое время самостоятельно останавливается, так как брешь в сосуде закрывается тромбом. Как текучесть, так и свертываемость крови обеспечивается многими веществами и клетками, которые, взаимодействуя между собой, образуют систему гемостаза.
Расстройства гемостаза могут быть причинами самостоятельных заболеваний, но чаще всего они играют очень серьезную роль в течении, а иногда и в исходе других заболеваний, в первую очередь, травм, хирургических вмешательств, сердечно-сосудистых заболеваний, обширных воспалений, родов. Поэтому определение показателей свертывающей системы крови (гемостаза) является очень информативным для оценки состояния, прогноза и эффективной терапии многих острых и хронических заболеваний.
Система гемостаза включает 3 взаимосвязанных звена:
1. Сосудистый компонент
Слой клеток, выстилающий поверхность сосудов изнутри, — эндотелий — выделяет в кровь много веществ, которые не позволяют клеткам крови склеиваться и прилипать к стенкам сосудов. При повреждении или разрыве сосуда эндотелиальные клетки выделяют вещества, запускающие систему тромбообразования.
2. Клеточный (тромбоцитарный) компонент
В крови постоянно циркулируют мелкие клетки или кровяные пластинки — тромбоциты, от которых зависит начальный и конечный этап тромбообразования. При повреждении сосуда тромбоциты прикрепляются к месту разрыва, распластываются по поврежденной поверхности, склеиваются друг с другом, образуя комок из клеток — первичную гемостатическую пробку. Этот этап называется первичным или тромбоцитарным гемостазом, вслед за которым развивается каскад реакций, обеспечивающих уплотнение и прочное закрепление тромба в сосуде (вторичный гемостаз). Кроме этого, тромбоциты играют существенную роль в дальнейшем восстановлении целостности сосуда.
3. Плазменный компонент
Это большая группа белков, ферментов, ионы кальция, которые содержатся в плазме и функционально объединяются в: а) свертывающую плазму (коагуляционную); б) противосвертывающую (антикоагуляционную); в) фибринолитическую (плазминовую) систему.
Подробное описание системы гемостаза определяется не только ее сложностью, но и тем большим количеством лабораторных исследований, которые отражают ее состояние.
Исследования эндокринной системы
Железы внутренней секреции или эндокринные железы — гипофиз, эпифиз, щитовидная и паращитовидные железы, надпочечники, поджелудочная железа, мужские и женские половые железы — получили свое название в связи с тем, что выделяют синтезируемые ими вещества — гормоны — непосредственно в кровь. Это обеспечивается очень развитой сосудистой сетью желез.
Гормоны обладают высокой биологической активностью и способны в очень малых концентрациях оказывать значительное влияние на обмен веществ в клетках и через него на функции систем и органов, массу тела и, в определенной степени, на поведение. Гормоны действуют на ткани избирательно, что связано с неодинаковым количеством рецепторов и чувствительностью тканей к разным гормонам.
Продукция гормонов находится под контролем нервной системы, которая через гипоталамус осуществляет регуляцию синтеза гормонов в гипофизе. Гипоталамические гормоны либерины (кортиколиберин, соматолиберин и др.) оказывают активирующее влияние на гипофиз, а статины (соматостатин, меланостатин и др.) — тормозящее. Гипофиз секретирует большую группу так называемых тропных гормонов, каждый из которых регулирует синтез соответствующего гормона в периферической железе. Гормоны периферических желез, в частности мозгового слоя надпочечников, в свою очередь, контролируют секрецию гипоталамических гормонов. Благодаря такому тесному взаимному влиянию и контролю железы внутренней секреции образуют единую эндокринную систему. Поэтому повышение или снижение содержания гормона в организме может возникать не только из-за изменений в самой железе (опухоль, атрофия, склероз и др.), но и в результате нарушения регуляции со стороны других систем.
Лабораторные исследования играют важную роль в диагностике нарушений гормонального статуса, поскольку окончательный диагноз большинства эндокринных заболеваний может быть установлен только после проведения специальных тестов и функциональных проб. Получить информацию об активности эндокринной железы можно путем непосредственного определения уровня соответствующего гормона, промежуточных продуктов его синтеза или превращения, а, также, определяя биохимические, физиологические и другие параметры процессов, на которые влияет тот или иной гормон. Некоторые эндокринные нарушения возникают из-за образования антител к гормонам и веществам, участвующим в их образовании. В таких случаях определение уровня (титра) антител позволяет точно определить механизмы гормонального нарушения. В современных специализированных лабораториях широко используются радиоиммунологические методы определения гормонов, которые очень точны, специфичны, хотя и дороги.
Исследования иммунной системы
Человек постоянно находится в окружении огромного количества различных патогенных бактерий и вирусов, которые содержатся в воздухе, воде, почве, на окружающих предметах, продуктах питания и теле самого человека. Они могут вызывать множество заболеваний, но происходит это в течение жизни относительно редко, так как в организме имеется сложная система защиты от чужеродных агентов — иммунная система. Организм человека можно сравнить с государством, располагающим большой хорошо вооруженной армией — иммунитетом. Огромное число «солдат» — иммунокомпетентных клеток — циркулирует в крови, «патрулируя» все органы и ткани и ликвидируя не только инфекционные агенты (микробы, их токсины, вирусы и т.д.), но и очищая организм от патологически измененных, злокачественных, отмирающих и пересаженных клеток (органов). Таким образом, основной функцией иммунной системы является распознавание и уничтожение тел и веществ чужеродной природы.
Центральными органами иммунной системы являются костный мозг и тимус (вилочковая железа), основными периферическими — лимфатические узлы, миндалины, селезенка. В иммунной системе выделяют клеточное и гуморальное звено, которые в организме тесно взаимосвязаны.
Клеточное звено иммунитета включает лимфоциты и их производные - плазматические клетки, а также макрофаги, нейтрофилы, эозинофилы, базофилы и тучные клетки. Их количество определяется по общему количеству лейкоцитов в крови и по лейкоцитарной формуле (лейкограмме). Выявление иммунокомпрметированных лиц основывается на анализе данных анамнеза, результатов клинико-лабораторного и иммунологического обследования. Определение иммунного статуса человека включает комплекс анализов, дающих качественную и количественную характеристику клеточного и гуморального звена иммунитета. Частые инфекционно-воспалительные заболевания, их затяжное течение и возникающие после осложнения свидетельствуют о функциональных или структурных дефектах иммунной системы человека.
Исследования функции почек
Почка — парный орган, расположенный по обе стороны позвоночника в поясничной области. Функция почек многообразна. Почки участвуют в удалении конечных продуктов обмена веществ, чужеродных и ядовитых веществ, поступающих в организм из внешней среды, поддерживают постоянство в крови осмотически активных веществ, кислотно-щелочное равновесие, участвуют в регуляции водного баланса, продуцируют вещества, регулирующие артериальное давление, эритропоэз и т.д. В конечном итоге, основная функция почек — образование мочи. Механизм образования мочи сосредоточен в сложной почечной структуре, называемой нефроном.
Нефрон состоит из клубочка и извитых канальцев. Кровь, поступающая в клубочек, фильтруется и в извитых канальцах образуется первичная моча, по своему составу соответствующая сыворотке крови. Однако через этот фильтр крупномолекулярные белки не проходят. Из первичной мочи вода и некоторые растворенные в ней вещества всасываются и возвращаются в кровь. Оставшаяся сконцентрированная жидкость выводится из организма в виде мочи.
Таким образом, процесс образования мочи состоит: из фильтрации сыворотки крови, обратного всасывания воды и растворенных в ней веществ (реабсорбция) и канальцевой секреции.
Пробы, используемые для изучения функции почек, в одних случаях позволяют оценивать их способность концентрировать мочу и выводить воду, в других — характеризовать отдельные процессы, связанные с мочеобразованием (функцию клубочков, извитых канальцев, исследовать почечный кровоток и т.д.
Вместе с тем, исследования функциональной способности почек ничуть не умаляют диагностическое значение результатов, полученных при химическом и микроскопическом изучении мочи.
Исследования функции печени
Печень занимает центральное место в процессах обмена веществ организме человека. Большое количество крови, проходящее через печень, позволяет этому органу выделять в кровоток и извлекать из него многие биологические вещества. Выделение желчи — лишь одна из функций печени.
Печень участвует в синтезе белков, углеводов, жиров, в пигментном обмене, образовании мочевины, креатина и целого ряда других соединений. Велика роль печени в обезвреживании различных токсических веществ путем образования безвредных комплексов, удаляемых из организма через почки. Функции печени определяются с помощью проведения проб (проба с нагрузкой сахарами, проба на синтез гиппуровой кислоты, бромсульфалеиновая проба).
Маркеры опухолей
Маркеры опухолей — белки с углеводными или липидными компонентами, которые выявляются в опухолевых клетках или сыворотке крови, являются показателем злокачественного процесса в организме. Эти белки обладают равной степенью специфичности — одни могут появляться при нескольких видах опухолей разной локализации, другие — только при каком-то одном определенной злокачественном новообразовании. Различна частота их обнаружения и диагностическая значимость, так как в 10-15% случаев (для разных опухолей эти величины различны) белок-маркер может не выявляться при наличии опухоли.
Опухолевые маркеры используются для контроля за течением заболевания и эффективности проводимой химиотерапии, хирургического и биологического лечения. Динамическое наблюдение за уровнем опухолевого маркера позволяет делать заключение о полной остановке или прогрессировании процесса, появлении метастазов. Нередко повышение концентрации опухолевого маркера отмечается значительно раньше каких-либо клинических признаков заболевания. Определение маркеров опухолей хотя и дорогой, но очень важный метод исследования, без которого в ряде случаев обойтись просто невозможно.
Большинство лабораторных методов исследования требуют специального оборудования.
Так, для подготовки и сохранения проб при заданной температуре, а также проведения бактериологических и серологических исследований используют термостаты, а также холодильники (криостаты). Для поддержания температуры выше температуры окружающей среды пользуются жидкостными и воздушными термостатами. Теплоносителем в жидкостных термостатах является вода или масло, в воздушных — воздух. Водяные термостаты позволяют поддерживать температуру от 10 до 100°, масляные и воздушные — до 300°. Термостаты снабжены подогревающим и терморегулярующим устройствами, имеют внутреннюю камеру, куда помещают исследуемый материал или биологическую пробу. Камера заключена в рубашку, в которой циркулирует теплоноситель, подогреваемый электронагревательным элементом или охлаждаемый холодильной машиной. В медицине используют главным образом термостаты, поддерживающие более высокую температуру, чем в помещении. В практике заготовки крови, хранения органов и тканей для трансплантации, различного биологического материала используют криостаты, обеспечивающие сохранность материалов при пониженных температурах.
Для иммунобиологических исследований используют приспособления для разлива и разведения проб и реактивов, обеспечивающие одновременный разлив исследуемых проб в многоячейковые планшеты однократного применения.
При гистологических исследованиях применяют автоматы для гистологической обработки и окраски тканей, микротомы для получения тонких срезов препаратов, автоматы для фиксации и окраски мазков крови.
Технические средства для количественных и качественных исследований
К ним относят оптические визуальные и фотометрические приборы для регистрации колориметрических, поляриметрических и других световых характеристик различных растворов, суспензий и эмульсий: колориметры, фотоколориметры, нефелометры, поляриметры, фотометры, спектрофотометры и др. Колориметры служат для определения светопоглощения в различных участках светового спектра. Визуальные колориметры позволяют исследователю сравнить проходящий через исследуемый объект световой поток с эталоном в определенном световом диапазоне; подбирая наиболее близкий по окраске эталон, определяют концентрацию данного вещества в пробе. Современные колориметрические приборы (фотометры, спектрофотометры) принципиально устроены так же, но в них световой поток, проходя через исследуемый раствор, улавливается не визуально, а фоточувствительным элементом, в котором возникшая электродвижущая сила прямо пропорциональна силе светового потока. По заранее построенному графику зависимости светопоглощения от концентрации исследуемого вещества определяют его содержание в исследуемой пробе. Для выделения необходимого участка светового диапазона в фотоколориметрах используют светофильтры, в спектрофотометрах с целью более строгого определения участков светового диапазона применяют, кроме того, монохроматоры, выделяющие очень узкий участок спектра. Эти методы основываются на том, что различные вещества имеют максимум светопоглощения в определенных участках спектра. Применение спектрофотометров, где более строго выделена опорная длина волны, обеспечивает возможность работы в ультрафиолетовой и инфракрасной областях спектра, что значительно расширило возможности фотометрических методик. Наибольшее распространение в мед. практике получили фотоэлектроколориметры, фотоэлектроколориметры-нефелометры, микроколориметры. Фотоколориметры в качестве измерительных приборов встраивают в биохимические автоанализаторы, которые обеспечивают определение многих показателей в автоматическом режиме.
Наиболее широко распространенными приборами для морфологических исследований (определения формы, размеров, строения тканей, клеток и других структур живого организма) являются различные микроскопы (см. Микроскоп).
В гематологических исследованиях применяются различные счетчики клеток крови, например, для измерения концентрации эритроцитов и лейкоцитов в суспензиях крови - кондуктометрические гемоцитометры, для определения концентрации гемоглобина в крови - фотоэлектрические гемоглобинометры, автоанализаторы морфологические и др. Эти и аналогичные им приборы в крупных лабораториях диагностических центров заменили трудоемкие процессы подсчета клеток крови и определения содержания гемоглобина, распределения клеток по размерам и т. д. Для определения групповой и резус-принадлежности крови, проведения серологических реакций используют различные автоматизированные устройства. Для исследования свертывающей системы крови применяют самопишущий переносной коагулограф, а для определения минерального состава биологических проб — пламенные фотометры. В небольших лабораториях для исследования крови часто пользуются простейшими устройствами: камерой Горяева для счета форменных элементов крови, лабораторным счетчиком для подсчета различных клеток крови (лейкоцитарной формулы) при микроскопическом исследовании, штативом и пипетками для определения СОЭ, капиллярным гемовискозиметром для определения вязкости крови и др.
Оснащение современных лабораторий автоматизированными и механизированными устройствами постепенно вытесняет ручные и визуальные методы исследования, обеспечивает более высокую точность и воспроизводимость результатов определений, увеличивает производительность труда лаборантов, что особенно важно в связи с постоянным ростом числа выполняемых в лабораториях анализов, появлением новых методик и расширением количества исследуемых показателей.