Адсорбция и адсорбционные равновесия

Адсорбция

Понятие адсорбции. Автоадсорбция. Адсорбент и адсорбат. Абсолютная и Гиббсовская адсорбция. Единицы измерения адсорбции. Зависимость величины адсорбции от концентрации, давления и температуры. Изотерма, изобара, изопикна, изостера адсорбции

Адсорбция - процесс самопроизвольного перераспределения компонентов системы между поверхностным слоем и объемом фазы.

Адсорбция может наблюдаться в многокомпонентных системах и при перераспределении в поверхностный слой уходит тот компонент, который сильнее понижает поверхностное натяжение. В однокомпонентной системе при формировании поверхностного слоя происходит изменение его структуры - уплотнение, которое называется автоадсорбцией.

В общем случае адсорбция может происходить не только благодаря стремлению поверхностной энергии к уменьшению, но и за счет химической реакции компонентов с поверхностью вещества. В этом случае поверхностная энергия может даже увеличиваться на фоне снижения энергии всей системы.

Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а вещество, которое перераспределяется – адсорбатом.

Обратный процесс перехода вещества с поверхности в объем фазы - десорбция.

В зависимости от агрегатного состояния фаз различают адсорбцию газа на твердых адсорбентах, твердое тело – жидкость, жидкость - жидкость, жидкость - газ. Для количественного описания адсорбции применяют две величины: первая измеряется числом молей или граммами, приходящимися на единицу поверхности или массы адсорбента:

А = m>1>/m>2>> >- абсолютная адсорбция, А = n>i>/S.

Величина, определяемая избытком вещества в поверхностном слое, также отнесенным к единице площади поверхности или массы адсорбента, называется Гиббсовской или относительной адсорбцией (Г).


Адсорбция зависит от концентрации компонентов и температуры.

А = f(c,T)- жидкость;

А = f(P,T)- газ

Различают следующие виды зависимостей:

1. Изотерма (рис. 8)

2. Изобара

3. Изостера

А=f>T>(c)

А=f>P>(T)

c=f>A>(T)

A=f>T>(P)

A=f>C>(T)

P=f>A>(T)

Фундаментальное уравнение Гиббса. Определение Гиббсовской адсорбции. Адсорбционное уравнение Гиббса

Считаем V>поверхности раздела> = 0.

dU = TdS + >dS>> + >

Проинтегрировав, получим: U = TS + >S>> + >

Полный дифференциал от этого уравнения:

dU = TdS + SdT + >dS + > > + Sd>> + > .

Подставляя значение dU из (6) в (7) и сократив одинаковые члены правой и левой части, получим:

SdT + >Sd>> + > = 0.

Предположим, что T = const:

Разделив правую и левую часть на поверхность S, получим фундаментальное адсорбционное уравнение Гиббса:

; ;

.

Определение зависимости поверхностного натяжения от адсорбции одного компонента, при постоянстве химических потенциалов других компонентов.

.

Известно, что , , (где , - равновесный и стандартный химический потенциал компонента i; ln a>i>- логарифм активности i –го компонента). Тогда уравнение Гиббса будет выглядеть так

Активность связана с концентрацией: с = а. Предположим, что = 1 (при с  0). Тогда

- для жидкости и газа


Обычно уравнение Гиббса применяют для растворов. Растворителем может быть не только индивидуальное вещество, но и смесь. В разбавленных растворах гиббсовская адсорбция очень мала, а его химический потенциал меняется очень мало с изменением концентрации растворенного вещества, т.е. d>>= 0. Поэтому для разбавленного раствора фундаментальное уравнение Гиббса выглядит так:

Из этих уравнений следует, что зная зависимость > >= f(С) (где С - концентрация растворенного вещества), можно рассчитать изотерму адсорбции, пользуясь адсорбционным уравнением Гиббса. Схема графического расчета показана на рис. 2.2.2.1: Т>ангенс угла наклона >соответствует значениям производных >в этих точках.>

>Зная эти производные> >уравнения Гиббса, можно рассчитать> значение Г, что позволяет построить >зависимость >>Г = >>f>>(С)>>. Уравнение Гиббса >показывает, что единица измерения гиббсовской адсорбции не зависит от >единицы измерений концентрации, а зависит от размерности величины >>R>>. Так как величина >>R>> отнесена к молю вещества, а >>>> ->> >>к единице площади, то >>Г>> = [моль/ единица площади]. Если >>>> выразить в [Дж/м>2>], то >>R>> нужно подставлять: >>R>> = >>8,314 Дж/моль>>>>К.>

Поверхностная активность. Поверхностно-активные и поверхностно-инактивные вещества. Анализ уравнения Гиббса. ПАВ. Эффект Ребиндера. Правило Дюкло-Траубе

В уравнении Гиббса влияние природы вещества на адсорбцию отражается производной. Эта производная определяет и знак гиббсовской адсорбции, и может служить характеристикой вещества при адсорбции. Чтобы исключить влияние концентрации на производную берут ее предельные значения, т.е. при стремлении концентрации к нулю. Эту величину Ребиндер назвал поверхностной активностью.

;

g = [Джм/моль] = [Нм2/моль]; [эрг см/моль] = [Гиббс].

Уравнение показывает, что чем сильнее снижается = f(c) с увеличением концентрации, тем больше поверхностная активность этого вещества.

Физический смысл поверхностной активности состоит в том, что она представляет силу, удерживающую вещество на поверхности и отнесенную к единице гиббсовской адсорбции.

Поверхностную активность можно представить как отрицательный тангенс угла наклона к касательной, проведенной к кривой Г = f(C) в точке пересечения с осью ординат. Поверхностная активность может быть положительной и отрицательной. Значение и знак ее зависят от природы растворенного вещества и растворителя.

1. >2>><>>1>, тогда <0 и Г>0: g>0  с увеличением концентрации поверхностное натяжение на границе раздела фаз убывает и вещество поверхностно-активно.

    >2>><>>1>, то g<0: Г <0  вещество поверхностно-инактивно.

    g = 0, Г = 0 - адсорбции нет, т.е. вещество индифферентно.

Поверхностно-активными веществами являются органические вещества, состоящие из углеводородного радикала и функциональной группы. Неорганические соли являются поверхностно-инактивными веществами. Ребиндер и Щукин в своих работах показали, что развитие микротрещин в твердых телах при деформации может происходить гораздо легче при адсорбции веществ из среды, в которой ведется деформирование: адсорбироваться могут как ионы электролитов, так и молекулы поверхностно-активного вещества (ПАВ), образуя на адсорбирующей поверхности их двумерный газ в результате нелокализованной адсорбции. Молекулы под давлением этого газа проникают в устье трещин и стремятся раздвинуть их, таким образом содействуя внешним силам, т.е. наблюдается адсорбционное понижение твердости твердого тела, что получило название эффекта Ребиндера. Поверхностная активность в гомологическом ряду поверхностно-активных веществ (ПАВ) повышается в среднем в 3,2 раза на каждую группу СН>2> (в водных растворах)– правило Дюкло – Траубе.

Адсорбционные равновесия

Адсорбционное равновесие в системе «газ – жидкость». Закон Генри. Мономолекулярная адсорбция в системах «газ – жидкость», «жидкость – жидкость», «газ – твердое». Изотерма адсорбции Ленгмюра. Уравнение Фрейндлиха. Теория полимолекулярной адсорбции БЭТ. Уравнение БЭТ

Предположим, что имеются компоненты-неэлектролиты. Будем считать, что адсорбат образует на поверхности адсорбента мономолекулярный слой. Мономолекулярная адсорбция с точки зрения термодинамики процесса выражается химическим потенциалом в адсорбционном слое и объемной фазе:

;

;

,

где - химический потенциал вещества в адсорбционном слое;

- химический потенциал вещества в объемной фазе.

При равновесии потенциалы равны: .

Преобразуем:

; – адсорбция; а>i>> >= c.

,

, где D - коэффициент распределения.

Выражение - константа Генри. Она не зависит от концентрации, определяется при постоянной температуре, A/a=K>г>,

А=аК>г> – закон Генри, т.е. при разбавлении системы коэффициент распределения стремится к постоянному значению, равному константе Генри. Если концентрация в сорбционном слое стремится к нулю, то а с; а = с; 1. Поэтому на практике закон Генри используют в следующем виде: а=К>г>с>i>. Если одна из фаз – газ, то имеем следующий вид: a = К>г>Р>i>,

К>г >= К>г>/RT.


Эти уравнения представляют собой уравнения изотермы адсорбции при малых концентрациях. В соответствии с этими уравнениями можно по другому сформулировать закон Генри: величина адсорбции при малых давлениях газа (малых концентрациях вещества в растворе) прямо пропорциональна давлению (концентрации). Эти зависимости показаны на рисунке 2.3.1.1. При адсорбции на твердых телах область действия закона мала из-за неоднородности поверхности, но даже на однородной поверхности при увеличении концентрации обнаруживается отклонение от закона. При малых концентрациях распределенного вещества отклонения обусловлены в основном соотношением между взаимодействием молекул друг с другом и с поверхностью адсорбента. Если когезионные взаимодействия адсорбата больше, то отклонение от закона отрицательно и <1, и коэффициент распределения увеличивается (кривая 1 на рис. 2.3.1.1). Если сильнее взаимодействие «адсорбат – адсорбент», то отклонение положительно и D уменьшается (кривая 2 на рис. 2.3.1.1). При дальнейшем увеличении концентрации происходит уменьшение свободной поверхности, снижается реакционная способность и кривые загибаются к оси абсцисс. Константу Генри получают экстраполяцией коэффициента распределения на нулевую концентрацию. В соответствии с правилом фаз Гиббса в гетерогенных системах равновесные параметры зависят от дисперсности или удельной поверхности. Для адсорбционных систем эта зависимость выражается в уменьшенных концентрациях вещества в объемной фазе с увеличением удельной поверхности адсорбента. Если в такой системе содержание распределяемого вещества постоянно, то

АmS>уд >+ сV = const,

где m - масса адсорбента;

S>уд>- удельная поверхность адсорбента;

V - объем фазы, из которой извлекается вещество;

const – постоянное количество вещества в системе.

,

или : разделим второй член на с;

D - коэффициент распределения;

; .

Из соотношения следует, что с увеличением удельной поверхности при постоянной концентрации адсорбата концентрация уменьшается и тем сильнее, чем больше константа Генри и меньше объем фазы.

Теория Ленгмюра позволяет учесть наиболее сильные отклонения от закона Генри, что связано с ограничением адсорбционного объема или поверхности адсорбента. Ограниченность этого параметра приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации распределяемого вещества. Это положение уточняется следующими утверждениями.

    Адсорбция локализована на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбента - образуется мономолекулярный слой.

    Адсорбционные центры энергетически эквивалентны - поверхность адсорбента эквипотенциальна.

    Адсорбированные молекулы не взаимодействуют друг с другом.

Ленгмюр предположил, что при адсорбции происходит квазихимическая реакция между распределяемым компонентом и адсорбционными центрами поверхности:

,

где А - адсорбционые центры поверхности;

В - распределенное вещество;

АВ - образующийся комплекс на поверхности.

Константа равновесия процесса: ,

где с>ав >= А - величина адсорбции;

с>а >= А>0 >= А>>> > - А,

где А>> - емкость адсорбционного монослоя или число адсорбционных центров, приходящихся на единицу поверхности или единицу массы адсорбента; А>0 >- число оставшихся свободных адсорбционных центров, приходящихся на единицу площади или единицу массы адсорбента; с> – концентрация распределенного вещества.

Подставляя величину концентрации в уравнение константы, получим выражения

, с>в >= с,

А = А>>Кс – АКс, - для жидкостей;

- для газов.

Эти выражения – уравнения изотермы адсорбции Ленгмюра. К и К>р> в уравнении характеризуют энергию взаимодействия адсорбента с адсорбатом. Адсорбционное уравнение часто представляют относительно степени заполнения поверхности, т.е. как отношение А/А>>:

,

.

Экспериментальные результаты по определению изотермы адсорбции обычно обрабатывают с помощью уравнения, записанного в линейной форме;

, т.е. уравнение типа y = b + ax.

Такая линейная зависимость позволяет графически определить А>> и К. Зная А>>, можно определить удельную поверхность адсорбента (поверхность единицы массы адсорбента):

,

где А>> - предельная адсорбция, выражаемая числом молей адсорбата на единицу массы адсорбента;

N>A> – число Авогадро;

>0> – площадь, занимаемая одной молекулой адсорбата.

    Если с 0, тогда уравнение примет вид:

А=А>>Кс; ; А = К>г>с, =Кс,

т.е. при с 0 уравнение Ленгмюра переходит в уравнение Генри.

    Если с, тогда А = А>>> >, А/А>> = 1. Это случай предельной адсорбции.

    Пусть адсорбция идет из смеси компонентов, в этом случае уравнение Ленгмюра записывается следующим образом:

>>>.>

Все рассмотренные выше уравнения справедливы для мономолекулярной адсорбции на адсорбенте с энергетически эквивалентными адсорбционными центрами. Однако реальные поверхности этим свойством не обладают. Приближенной к реальности является возможность распределения адсорбционных центров по энергии. Приняв линейное распределение, Темкин использовал формулу уравнения Ленгмюра и получил уравнение для средних степеней заполнения адсорбента.

,

где - константа, характеризующая линейное распределение;

К>0> - константа уравнения Ленгмюра, отвечающая максимальной теплоте адсорбции.

Из уравнения следует, что увеличение парциального давления (из-за увеличения концентрации) одного компонента подавляет адсорбцию другого и тем сильнее, чем больше его адсорбционная константа равновесия. Уравнение часто называют логарифмической изотермой адсорбции. Если принять экспоненциальное распределение центров по поверхности, то в области средних заполнений получается ранее найденное эмпирическим путем уравнение Фрейндлиха:

.

Прологарифмировав, получим ,

где K, n – постоянные.

Использование уравнения Фрейндлиха в логарифмической форме позволяет определить константу уравнения.

Уравнение Ленгмюра можно использовать только при адсорбции в мономолекулярном слое. Это условие выполняется при хемосорбции, физической адсорбции газов при меньшем давлении и температуре выше критической. Однако в большинстве случаев мономолекулярный адсорбционный слой не компенсирует полностью избыточную поверхностную энергию и поэтому остается возможность влияния поверхностных сил на второй и т.д. адсорбционные слои. Это реализуется в том случае, когда газы и пары адсорбируются при температуре ниже критической, т.е. образуются полимолекулярные слои на поверхности адсорбента, что можно представить как вынужденную конденсацию (рис. 2.3.1.2 и 2.3.1.3).


В результате этих представлений была выведена следующая формула:

- уравнение полимолекулярной адсорбции БЭТ,

где ;

K>L>> >= a>ж>>п>> >– константа конденсации пара;

а>ж >- активность вещества в жидкости;

а>п >- активность вещества в состоянии насыщенного пара;

а>п >= Р>s>.

Физический смысл С: характеризует разность энергии Гиббса в процессах чистой адсорбции и конденсации. Это уравнение получило название БЭТ (Бранауэр-Эммет- Теллер).

При р/р>s><<1, уравнение БЭТ превращается в уравнение Легмюра, которое при дальнейшем уменьшении давления (Р 0) переходит в закон Генри:

.

При обработке экспериментальных данных уравнение БЭТ используют в линейной форме (рис. 2.3.1.4):


; ,

таким образом графически находят обе константы уравнения А>> и С.