Константы скорости реакции бензофеноноксида со спиртами

Константы скорости реакции бензофеноноксида со спиртами

Зиганшина С.Х., Хурсан С.Л., Назаров А.М., Калиниченко И.А.

Методом импульсного фотолиза и кинетической спектрофотометрии исследованы кинетические закономерности реакции бензофеноноксида (БФО) с рядом спиртов (метанол, этанол, изо-пропанол, н-бутанол, изо-бутанол, изо-пентанол, циклогексанол, ментол, трифенилметанол, фенилметанол, адамантанол и вода) в растворе ацетонитрила и бензола.

БФО получали импульсным фотолизом растворов дифенилдиазометана, насыщенных кислородом воздуха [1]:

PH3CN2

1PH3C:

3PH3C:+O2

PH3COO+PH3CN2

PH3COO+PH3COO

PH3COO+ROH

1PH3C:+N2

3PH3C:

PH3COO

PH3C=O+N2

2PH3C=O=O2

продукты

(1)

(ST, TS)

(2)

(3)

(4)

(5)

Начальная концентрация PH3CN2 во всех случаях составляла 1.8.10-4 моль/л. Все исследования проводились при комнатной температуре. За расходованием БФО следили спектрофотометрически в растворе ацетонитрила на максимуме поглощения (410 нм), в бензоле - 415 нм [1].

Согласно схеме, убыль оптической плотности A, соответствующая расходованию БФО, описывается уравнением:

(I)

где коэффициент экстинкции =1900 л/моль.см [1], длина кюветы l=10 см, k4 - константа скорости реакции рекомбинации БФО. В ацетонитриле k4=1.8.107 л/моль.с и в бензоле k4=7.107 л/моль.с [2].

Методом нелинейного регрессионного анализа, используя известные значения А0 и k(2), находили константы k(1), линейно зависящие от концентрации ROН. Из тангенса угла наклона этих зависимостей определяли абсолютные константы скорости взаимодействия БФО со спиртами k5 (табл.).

Таблица. Абсолютные константы скорости реакции PH3COO c ROH (293 К).

R

[ROH], моль/л

k5, л/моль·с

pK [3]

IP

CH3CN

C6H6

H3O

1.10-2. 7.10-1

(4.70.9).102

15.7

12.17

MeOH

1.10-2. 7.10-1

(1.00.1).103

(1.30.2).104

16

10.82

i-PrOH

5.10-3.1

(1.20.1).103

(5.3 0.5).103

18

10.10

EtOH

1.10-2. 1

(1.80.4).103

(1.0 0.1).104

18

10.41

6.10-3. 4.10-1

(2.90.5).103

(2.0 0.3).104

19

i-BuOH

1.10-2. 1

(1.8 0.1).103

(1.40.2).104

10.02

н-BuOH

1.10-2. 5.10-1

(2.2 0.2).103

(1.00.2).104

9.99

i-C5H21OH

5.10-3. 3.10-1

(2.30.4).103

(71).103

9.78

ц-C6H23OH

5.10-3. 4.10-2

(4.8 0.7).103

(31).104

9.75

4.10-3. 5.10-2

(71).103

(2.50.6).105

9.09

Ph3COH

1.10-2. 3.10-1

(41).102

19

PhCH3OH

2.10-4.1.10-2

(2.40.4).104

18

8.26

Как видно из таблицы, константа скорости БФО со спиртами в бензоле в среднем на порядок выше, чем в ацетонитриле для всех ROH. Аналогичное влияние растворителей на константу скорости рекомбинации БФО описано в работе [2]. Это связано с экстра-поляризацией карбонилоксида в полярном ацетонитриле, что приводит к усилению степени сольватации БФО и понижению его реакционной способности.

Для объяснения влияния природы спирта на кинетику реакции с БФО были исследованы зависимости логарифма константы скорости реакции k5 от кислотности спирта (pK), а также от потенциала ионизации ROH (IP).

С ростом кислотности спиртов по шкале Мак-Ивена (падение pK) наблюдается уменьшение константы скорости взаимодействия БФО со спиртом в среде ацетонитрила, а в бензоле удовлетворительная корреляция отсутствует. С ростом потенциала ионизации спирта IP константа скорости реакции уменьшается как в ацетонитриле, так и в бензоле. Эти результаты свидетельствуют об электрофильной атаке карбонилоксидом молекулы спирта и согласуются с литературными данными об электронной природе исследуемой реакции, полученными методом хемилюминесценции [4]. Можно предположить, что реакция протекает по механизму внедрения карбонилоксида по связи O-H спирта, причем в лимитирующей стадии реакции осуществляется образование химической связи между атомом углерода БФО и атомом кислорода гидроксильной группы. Замедление реакции в среде CH3CN, по-видимому, связано с образованием прочного комплекса между БФО и молекулой растворителя, что понижает реакционную способность карбонилоксида в исследуемой реакции. Предполагаемый механизм реакции представлен на схеме.

С другой стороны, известно [5], что диметилкарбонилоксид реагирует со спиртами как нуклеофил, что, по-видимому, связано с преимущественно бирадикальной природой данного карбонилоксида. Несомненно, электронная природа карбонилоксидов заслуживает дальнейшего внимательного изучения.

Схема

Список литературы

Назаров А.М., Чайникова Е.М., Хурсан С.Л. и др. // Изв. РАН. Сер. хим. 1998. № 7. С. 1329-1332.

Nazarov A.M., Chainikova E.M., Khursan S.L. et al. // React. Kinet. Catal. Lett. 1998. V. 65. № 2. P. 311-314.

McEwen W.K. // J. Am. Chem. Soc. 1936. V. 58. P. 1124.

Назаров А.М. Дисс. … докт. хим. наук. Уфа: ИОХ УНЦ РАН, 2000.

Yamamoto Y., Niki E., Kamiya Y. // Bull. Chem. Soc. Jpn. 1982. № 55. P. 2677-2678.

Для подготовки данной работы были использованы материалы с сайта http://www.bashedu.ru